Horm Metab Res 2005; 37(8): 500-504
DOI: 10.1055/s-2005-870317
Original Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Blockade of Angiotensin II Type 1 Receptor Diminishes Cardiac Hypertrophy, but Does Not Abolish Thyroxin-induced Preconditioning

C.  Pantos1 , I.  Paizis1 , I.  Mourouzis1 , P.  Moraitis1 , S.  Tzeis1 , E.  Karamanoli1 , C.  Mourouzis1 , H.  Karageorgiou1 , D.  V.  Cokkinos1, 2
  • 1 Department of Pharmacology, University of Athens, Greece
  • 2 1st Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
Further Information

Publication History

Received 15 December 2004

Accepted after revision 22 March 2005

Publication Date:
01 September 2005 (online)

Abstract

Growth and stress seem to share common intracellular pathways and activation of growth signaling can increase resistance to stress. Thyroid hormone induces cardiac hypertrophy and preconditions the myocardium against ischemia reperfusion injury. The present study investigated whether this response is mediated by renin-angiotensin system (RAS). RAS is shown to be activated in hyperthyroidism and is involved in the development of cardiac hypertrophy. Male Wistar rats were treated with L-thyroxin (25 μg/100 g, sc, od) for fourteen days, while normal rats served as controls. In addition, irbesartan (150 mg/kg po), a potent blocker of angiotensin II type 1 receptor (AT1), was given with L-thyroxin for fourteen days. Isolated hearts were perfused in Langendorff mode; after stabilization, they were subjected to 20 min zero-flow global ischemia and 45 min of reperfusion. Thyroxin induced cardiac hypertrophy, which was diminished with irbesartan administration. Post-ischemic recovery of function was increased in thyroxin-treated hearts as compared to controls while ischemic contracture was accelerated and intensified. Irbesartan did not abolish this response. In conclusion, blockade of angiotensin II type 1 receptor with irbesartan preserves thyroxin-induced cardioprotection while diminishing cardiac hypertrophy. It is likely that thyroxin-induced cardioprotection is due to a direct effect of thyroid hormone.

References

  • 1 Pantos C, Malliopoulou V, Varonos D, Cokkinos D V. Thyroid hormone and phenotypes of cardioprotection.  Basic Res Cardiol. 2004;  99 101-120
  • 2 Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Paizis I, Steinberg N, Varonos D, Cokkinos D V. Long-term thyroxin administration protects the heart in a pattern similar to ischemic preconditioning.  Thyroid. 2002;  12 325-329
  • 3 Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Tzeis S, Carageorgiou H, Varonos D, Cokkinos D V. Long-term thyroxin administration increases HSP70 mRNA expression and attenuates p38 MAP kinase activity in response to ischemia.  J Endocrinol. 2001;  170 207-215
  • 4 Pantos C, Malliopoulou V, Mourouzis I, Karamanoli E, Moraitis P, Tzeis S, Paizis I, Carageorgiou H, Varonos D, Cokkinos D V. Thyroxin pretreatment increases basal myocardial HSP27 expression and accelerates translocation and phosphorylation of this protein upon ischemia.  Eur J Pharmacol. 2003;  478 53-60.
  • 5 Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T. Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic system.  Am J Physiol. 1997;  272 E227-232
  • 6 Marchant C, Brown L, Sernia C. Renin-angiotensin system in thyroid dysfunction in rats.  J Cardiovasc Pharmacol. 1993;  22 449-455
  • 7 Smallridge R, Rogers J, Verma P. Serum angiotensin-converting enzyme. Alterations in hyperthyroidism, hypothyroidism and subacute thyroiditis.  JAMA. 1983;  250 2489-2493
  • 8 Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system.  N Engl J Med. 2001;  344 501-509
  • 9 Hong-Brown L, Deschepper C. Effects of thyroid hormones on angiotensinogen gene expression in rat liver, brain and cultured cells.  Endocrinology. 1992;  130 1231-1237
  • 10 Kobori H, Ichihara A, Suzuki H, Takenaka T, Miyashita Y, Hayashi M, Saruta T. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.  Am J Physiol. 1997;  273 H593-H599
  • 11 Sharma A, Singh M. Effect of ethylisopropylamiloride, a Na+-H+ exchange inhibitor,on cardioprotective effect of ischemic and angiotensin preconditioning.  Mol Cell Biochem. 2000;  214 31-38
  • 12 Nakano A, Miura T, Ura N, Suzuki K, Shimamoto K. Role of angiotensin II type 1 receptor in preconditioning against infarction.  Coronary artery Dis. 1997;  8 343-350
  • 13 Diaz R J, Wilson G J. Selective blockade of AT1 angiotensin II receptors abolishes ischemic preconditioning in isolated rabbit hearts.  J Mol Cell Cardiol. 1997;  29 129-139
  • 14 Liu Y, Tsuchida A, Cohen M V, Downey J M. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts.  J Mol Cell Cardiol. 1995;  27 883-892
  • 15 Sugden P H, Clerk A. ”Stress responsive” mitogen activated protein kinases ( c-Jun N terminal kinases and p38 mitogen-activated protein kinases) in the myocardium.  Circ Res. 1998;  83 345-352
  • 16 Pantos C, Cokkinos D D, Tzeis S, Malliopoulou V, Mourouzis I, Carageorgiou H, Limas C, Varonos D, Cokkinos D V. Hyperthyroidism is associated with preserved preconditioning capacity but intensified and accelerated ischemic contracture in rat heart.  Basic Res Cardiol. 1999;  94 254-260
  • 17 Schulze U, Larsen M, Villadsen J. Determination of intracellular trehalose and glycogen in Saccharomyces cerevisiae.  Anal Biochem. 1995;  228 143-149
  • 18 Lee M, Bohm M, Paul M, Ganten D. Tissue renin-angiotensin systems. Their role in cardiovascular disease.  Circulation. 1993;  87 IV7-IV13
  • 19 Das D K, Maulik N, Engelman R M. Redox regulation of angiotensin II signalling in the heart.  J Cell Mol Med. 2004;  8 144-152
  • 20 Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy.  J Endocrinol. 1999;  160 43-47
  • 21 Hu L, Benvenuti L, Liberti E, Carneiro-Ramos M, Barreto-Chaves M. Thyroxin-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling.  Am J Physiol. 2003;  285 R1473-R1480
  • 22 Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, Karamanoli E, Cokkinos D D, Carageorgiou H, Varonos D, Cokkinos D V. Thyroid hormone and cardioprotection; study of p38 MAPK and JNKs during ischemia and at reperfusion in isolated rat heart.  Mol Cell Biochem. 2003;  242 173-180
  • 23 Kolocassides K, Galinanes M, Hearse D. Dichotomy of ischemic preconditioning. Improved post-ischemic contractile function despite intensification of ischemic contracture.  Circulation. 1996;  93 1725-1733
  • 24 Pantos C, Mourouzis I, Tzeis S, Malliopoulou V, Cokkinos D D, Asimakopoulos P, Carageorgiou H, Varonos D, Cokkinos D V. Propranolol diminishes cardiac hypertrophy but does not abolish acceleration of the ischemic contracture in hyperthyroid hearts.  J Cardiovasc Pharmacol. 2000;  36 384-389
  • 25 Klemperer J, Ojamaa K, Klein I. Thyroid hormone therapy in cardiovascular disease.  Prog Cardiovasc Dis. 1996;  38 329-336
  • 26 Pantos C, Mourouzis I, Malliopoulou V, Paizis I, Tzeis S, Moraitis P, Sfakianoudis K, Varonos D, Cokkinos D V. Dronedarone administration prevents body weight gain and increases tolerance of the heart to ischemic stress: a possible involvement of thyroid hormone receptor α 1.  Thyroid. 2005;  15 16-23

Constantinos Pantos

Department of Pharmacology, University of Athens

75 Mikras Asias Ave. · 11527 Goudi · Athens · Greece

Phone: +30 (210) 746 25 60

Fax: +30 (210) 770 51 85

Email: cpantos@cc.uoa.gr