Abstract
The role of intact proinsulin and adiponectin in endothelial dysfunction and insulin resistance has been receiving increasing attention. This study investigates the effect of PPARγ stimulation or beta-cell stimulation on metabolic and vascular parameters in patients with type 2 diabetes. In our study, 173 type 2 diabetic patients were recruited and randomly assigned to pioglitazone 45 mg or glimepiride 1 - 6 mg treatment. Intima media thickness of the carotid artery, glycemic control, insulin resistance, adiponectin and intact proinsulin levels were assessed at baseline and after six months of treatment. Despite similar improvements in metabolic control (HbA1c after 24 weeks: - 0.8 ± 0.9 % [pioglitazone] vs. - 0.6 ± 0.8 % [glimepiride]; mean ± SD; p < 0.0001, respectively), improvements in intima media thickness (- 0.033 ± 0.052 mm; p < 0.0001), proinsulin intact (- 5.92 ± 10.04 pmol/l; p < 0.0001), adiponectin (10.9 ± 6.3 μg/ml; p < 0.0001) and HOMA score (- 2.21 ± 3.40; p < 0.0001) were observed by pioglitazone but not glimepiride treatment. Reduction in intima media thickness was correlated with improved insulin sensitivity (r = 0.29; p = 0.0003), and proinsulin intact levels (r = 0.22; p = 0.006), while an inverse correlation was found with adiponectin levels (r = - 0.37; p < 0.0001). Measurement of adiponectin and intact proinsulin enables characterization of the metabolic situation and an estimation of atherosclerotic risk in patients with type 2 diabetes.
Key words
Insulin resistance · Diabetes mellitus type 2 · Adiponectin · Intact proinsulin · Intima media thickness
References
1
Kannel W B, McGee D L.
Diabetes and cardiovascular disease. The Framingham study.
JAMA.
1979;
241
2035-2038
2
Manson J E, Colditz G A, Stampfer M J, Willett W C, Krolewski A S, Rosner B, Arky R A, Speizer F E, Hennekens C H.
A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women.
Arch Intern Med.
1991;
151
1141-1147
3
Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y.
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
Biochem Biophys Res Commun.
1999;
257
79-83
4
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley R E, Tataranni P A.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.
J Clin Endocrinol Metab.
2001;
86
1930-1935
5
Schulze M B, Rimm E B, Shai I, Rifai N, Hu F B.
Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes.
Diabetes Care.
2004;
27
1680-1687
6
Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner A J, Tomiyama Y, Matsuzawa Y.
Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages.
Blood.
2000;
96
1723-1732
7
Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y.
Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.
Circulation.
1999;
100
2473-2476
8
Zoccali C, Mallamaci F, Tripepi G, Benedetto F A, Cutrupi S, Parlongo S, Malatino L S, Bonanno G, Seminara G, Rapisarda F, Fatuzzo P, Buemi M, Nicocia G, Tanaka S, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y.
Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease.
J Am Soc Nephrol.
2002;
13
134-141
9
Zethelius B, Byberg L, Hales C N, Lithell H, Berne C.
Proinsulin and acute insulin response independently predict Type 2 diabetes mellitus in men-report from 27 years of follow-up study.
Int J Obes Relat Metab Disord.
2003;
46
20-26
10
Yudkin J S.
Circulating proinsulin-like molecules.
J Diabetes Complications.
1993;
7
113-123
11
Haffner S M, D’Agostino R, Mykkanen L, Hales C N, Savage P J, Bergman R N, O’Leary D, Rewers M, Selby J, Tracy R, Saad M F.
Proinsulin and insulin concentrations in relation to carotid wall thickness: Insulin Resistance Atherosclerosis Study.
Stroke.
1998;
29
1498-1503
12
Pfutzner A, Pfutzner A H, Larbig M, Forst T.
Role of intact proinsulin in diagnosis and treatment of type 2 diabetes mellitus.
Diabetes Technol Ther.
2004;
6
405-412
13
Haffner S M, Mykkanen L, Stern M P, Valdez R A, Heisserman J A, Bowsher R R.
Relationship of proinsulin and insulin to cardiovascular risk factors in nondiabetic subjects.
Diabetes.
1993;
42
1297-1302
14
Festa A, D’Agostino R Jr, Mykkanen L, Tracy R P, Zaccaro D J, Hales C N, Haffner S M.
Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. The Insulin Resistance Atherosclerosis Study (IRAS).
Arterioscler Thromb Vasc Biol.
1999;
19
562-568
15
Yudkin J S, May M, Elwood P, Yarnell J W, Greenwood R, Davey S G.
Concentrations of proinsulin like molecules predict coronary heart disease risk independently of insulin: prospective data from the Caerphilly Study.
Diabetologia.
2002;
45
327-336
16
Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus.
Diabetes Care.
2002;
26 (Suppl. 1)
S4-S19
17
Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C.
Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
Diabetologia.
1985;
28
412-419
18
Hills S A, Balkau B, Coppack S W, Dekker J M, Mari A, Natali A, Walker M, Ferrannini E.
The EGIR-RISC STUDY (The European group for the study of insulin resistance: relationship between insulin sensitivity and cardiovascular disease risk): I. Methodology and objectives.
Int J Obes Relat Metab Disord.
2004;
47
566-570
19
Koshiyama H, Tanaka S, Minamikawa J.
Effect of calcium channel blocker amlodipine on the intimal-medial thickness of carotid arterial wall in type 2 diabetes.
J Cardiovasc Pharmacol.
1999;
33
894-896
20
Pankow J S, Jacobs D R Jr, Steinberger J, Moran A, Sinaiko A R.
Insulin resistance and cardiovascular disease risk factors in children of parents with the insulin resistance (metabolic) syndrome.
Diabetes Care.
2004;
27
775-780
21
Trevisan M, Liu J, Bahsas F B, Menotti A.
Syndrome X and mortality: a population-based study. Risk Factor and Life Expectancy Research Group.
Am J Epidemiol.
1998;
148
958-966
22
Lerman I, Villa A R, Rios Torres J M, Tamez L E, Gomez P F, Villar Velasco S L, Rull Rodrigo J A.
Correlations between surrogate measures of insulin resistance and cardiovascular risk factors in obese and overweight patients.
J Diabetes Complications.
2003;
17
66-72
23
Haffner S M, D’Agostino R Jr, Mykkanen L, Tracy R, Howard B, Rewers M, Selby J, Savage P J, Saad M F.
Insulin sensitivity in subjects with type 2 diabetes. Relationship to cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study.
Diabetes Care.
1999;
22
562-568
24
Tenerz A, Norhammar A, Silveira A, Hamsten A, Nilsson G, Ryden L, Malmberg K.
Diabetes, insulin resistance, and the metabolic syndrome in patients with acute myocardial infarction without previously known diabetes.
Diabetes Care.
2003;
26
2770-2776
25
Lakka H M, Laaksonen D E, Lakka T A, Niskanen L K, Kumpusalo E, Tuomilehto J, Salonen J T.
The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men.
JAMA.
2002;
288
2709-2716
26
Steinberg H O, Baron A D.
Vascular function, insulin resistance and fatty acids.
Diabetologia.
2002;
45
623-634
27
Zeng G, Nystrom F H, Ravichandran L V, Cong L N, Kirby M, Mostowski H, Quon M J.
Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells.
Circulation.
2000;
101
1539-1545
28
Jaap A J, Shore A C, Tooke J E.
Relationship of insulin resistance to microvascular dysfunction in subjects with fasting hyperglycaemia.
Diabetologia.
1997;
40
238-243
29
Combs T P, Berg A H, Obici S, Scherer P E, Rossetti L.
Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.
J Clin Invest.
2001;
108
1875-1881
30
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn B B, Kadowaki T.
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.
Nat Med.
2002;
8
1288-1295
31
Spranger J, Kroke A, Mohlig M, Bergmann M M, Ristow M, Boeing H, Pfeiffer A F.
Adiponectin and protection against type 2 diabetes mellitus.
Lancet.
2003;
361
226-228
32
Winzer C, Wagner O, Festa A, Schneider B, Roden M, Bancher-Todesca D, Pacini G, Funahashi T, Kautzky-Willer A.
Plasma adiponectin, insulin sensitivity, and subclinical inflammation in women with prior gestational diabetes mellitus.
Diabetes Care.
2004;
27
1721-1727
33
Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y.
Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.
Circulation.
2001;
103
1057-1063
34
Shimabukuro M, Higa N, Asahi T, Oshiro Y, Takasu N, Tagawa T, Ueda S, Shimomura I, Funahashi T, Matsuzawa Y.
Hypoadiponectinemia is closely linked to endothelial dysfunction in man.
J Clin Endocrinol Metab.
2003;
88
3236-3240
35
Fernandez-Real J M, Castro A, Vazquez G, Casamitjana R, Lopez-Bermejo A, Penarroja G, Ricart W.
Adiponectin is associated with vascular function independent of insulin sensitivity.
Diabetes Care.
2004;
27
739-745
36
Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y.
Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.
Circulation.
2000;
102
1296-1301
37
Pischon T, Girman C J, Hotamisligil G S, Rifai N, Hu F B, Rimm E B.
Plasma adiponectin levels and risk of myocardial infarction in men.
JAMA.
2004;
291
1730-1737
38
Oh J Y, Barrett-Connor E, Wedick N M.
Sex differences in the association between proinsulin and intact insulin with coronary heart disease in nondiabetic older adults: the Rancho Bernardo Study.
Circulation.
2002;
105
1311-1316
39
Pfutzner A, Kunt T, Hohberg C, Mondok A, Pahler S, Konrad T, Lubben G, Forst T.
Fasting intact proinsulin is a highly specific predictor of insulin resistance in type 2 diabetes.
Diabetes Care.
2004;
27
682-687
40
Ward W K, LaCava E C, Paquette T L, Beard J C, Wallum B J, Porte D Jr.
Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance.
Int J Obes Relat Metab Disord.
1987;
30
698-702
41
Mohamed-Ali V, Gould M M, Gillies S, Goubet S, Yudkin J S, Haines A P.
Association of proinsulin-like molecules with lipids and fibrinogen in non-diabetic subjects-evidence against a modulating role for insulin.
Int J Obes Relat Metab Disord.
1995;
38
1110-1116
42
Schneider D J, Nordt T K, Sobel B E.
Stimulation by proinsulin of expression of plasminogen activator inhibitor type-I in endothelial cells.
Diabetes.
1992;
41
890-895
43
Nagi D K, Hendra T J, Ryle A J, Cooper T M, Temple R C, Clark P M, Schneider A E, Hales C N, Yudkin J S.
The relationships of concentrations of insulin, intact proinsulin and 32 - 33 split proinsulin with cardiovascular risk factors in type 2 (non-insulin-dependent) diabetic subjects [see comments].
Diabetologia.
1990;
33
532-537
44
Lindahl B, Dinesen B, Eliasson M, Roder M, Jansson J H, Huhtasaari F, Hallmans G.
High proinsulin concentration precedes acute myocardial infarction in a nondiabetic population.
Metabolism.
1999;
48
1197-1202
45
Satoh N, Ogawa Y, Usui T, Tagami T, Kono S, Uesugi H, Sugiyama H, Sugawara A, Yamada K, Shimatsu A, Kuzuya H, Nakao K.
Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect.
Diabetes Care.
2003;
26
2493-2499
46
Winkler K, Konrad T, Fullert S, Friedrich I, Destani R, Baumstark M W, Krebs K, Wieland H, Marz W.
Pioglitazone reduces atherogenic dense LDL particles in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study.
Diabetes Care.
2003;
26
2588-2594
47
Aronoff S, Rosenblatt S, Braithwaite S, Egan J W, Mathisen A L, Schneider R L.
Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group.
Diabetes Care.
2000;
23
1605-1611
48
Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, Cusi K, Mandarino L J, DeFronzo R A.
Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone.
Diabetes Care.
2001;
24
710-719
49
Hanefeld M, Brunetti P, Schernthaner G H, Matthews D R, Charbonnel B H, QUARTET S tudy.
One-year glycemic control with a sulfonylurea plus pioglitazone versus a sulfonylurea plus metformin in patients with type 2 diabetes.
Diabetes Care.
2004;
27
141-147
50
Pistrosch F, Passauer J, Fischer S, Fuecker K, Hanefeld M, Gross P.
In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control.
Diabetes Care.
2004;
27
484-490
51
Vinik A I, Stansberry K B, Barlow P M.
Rosiglitazone treatment increases nitric oxide production in human peripheral skin: a controlled clinical trial in patients with type 2 diabetes mellitus.
J Diabetes Complications.
2003;
17
279-285
52
Jiang C, Ting A T, Seed B.
PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.
Nature.
1998;
391
82-86
53
Chinetti G, Griglio S, Antonucci M, Torra I P, Delerive P, Majd Z, Fruchart J C, Chapman J, Najib J, Staels B.
Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages.
J Biol Chem.
1998;
273
25 573-25 580
54
Pasceri V, Wu H D, Willerson J T, Yeh E T.
Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators.
Circulation.
2000;
101
235-238
55
Kubo K.
Effect of pioglitazone on blood proinsulin levels in patients with type 2 diabetes mellitus.
Endocr J.
2002;
49
323-328
56
Yu J G, Javorschi S, Hevener A L, Kruszynska Y T, Norman R A, Sinha M, Olefsky J M.
The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects.
Diabetes.
2002;
51
2968-2974
57
Miyazaki Y, Mahankali A, Wajcberg E, Bajaj M, Mandarino L J, DeFronzo R A.
Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in type 2 diabetic patients.
J Clin Endocrinol Metab.
2004;
89
4312-4319
58
Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T.
Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes.
Metabolism.
2002;
51
314-317
59
Tsunekawa T, Hayashi T, Suzuki Y, Matsui-Hirai H, Kano H, Fukatsu A, Nomura N, Miyazaki A, Iguchi A.
Plasma adiponectin plays an important role in improving insulin resistance with glimepiride in elderly type 2 diabetic subjects.
Diabetes Care.
2003;
26
285-289
60
O’Leary D H, Polak J F, Kronmal R A, Manolio T A, Burke G L, Wolfson S K Jr.
Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group.
N Engl J Med.
1999;
340
14-22
61
Bots M L, Hofman A, Grobbee D E.
Increased common carotid intima-media thickness. Adaptive response or a reflection of atherosclerosis? Findings from the Rotterdam Study.
Stroke.
1997;
28
2442-2447
62
Touboul P J, Elbaz A, Koller C, Lucas C, Adrai V, Chedru F, Amarenco P.
Common carotid artery intima-media thickness and brain infarction : the Etude du Profil Genetique de l’Infarctus Cerebral (GENIC) case-control study. The GENIC Investigators.
Circulation.
2000;
102
313-318
63
Wohlin M, Sundstrom J, Arnlov J, Andren B, Zethelius B, Lind L.
Impaired insulin sensitivity is an independent predictor of common carotid intima-media thickness in a population sample of elderly men.
Atherosclerosis.
2003;
170
181-185
64
Mitsuhashi N, Onuma T, Kubo S, Takayanagi N, Honda M, Kawamori R.
Coronary artery disease and carotid artery intima-media thickness in Japanese type 2 diabetic patients.
Diabetes Care.
2002;
25
1308-1312
65
Nakamura T, Matsuda T, Kawagoe Y, Ogawa H, Takahashi Y, Sekizuka K, Koide H.
Effect of pioglitazone on carotid intima-media thickness and arterial stiffness in type 2 diabetic nephropathy patients.
Metabolism.
2004;
53
1382-1386
66
Koshiyama H, Shimono D, Kuwamura N, Minamikawa J, Nakamura Y.
Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes.
J Clin Endocrinol Metab.
2001;
86
3452-3456
67
Sidhu J S, Kaposzta Z, Markus H S, Kaski J C.
Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus.
Arterioscler Thromb Vasc Biol.
2004;
24
930-934
68
Katz R J, Ratner R E, Cohen R M, Eisenhower E, Verme D.
Are insulin and proinsulin independent risk markers for premature coronary artery disease?.
Diabetes.
1996;
45
736-741
69
Niskanen L, Rauramaa R, Miettinen H, Haffner S M, Mercuri M, Uusitupa M.
Carotid artery intima-media thickness in elderly patients with NIDDM and in nondiabetic subjects.
Stroke.
1996;
27
1986-1992
Thomas Forst, M.D.
IKFE GmbH
Parcusstr. 8 · 55116 Mainz · Germany
Phone: +49 (6131) 576 36 20 ·
Fax: +49 6131 57636 11
Email: ThomasF@ikfe.de