Horm Metab Res 2005; 37(9): 533-537
DOI: 10.1055/s-2005-870418
Review
© Georg Thieme Verlag KG Stuttgart · New York

Leptin TRH and Ghrelin: Influence on Energy Homeostasis at Rest and During Exercise

V.  Popovic1 , L.  H.  Duntas2
  • 1Neuroendocrine Unit, Institute of Endocrinology, University Clinical Center, Belgrade, Serbia
  • 2Endocrine Unit, Evgenidion Hospital, University of Athens Medical School, Athens, Greece
Further Information

Publication History

Received 16 February 2005

Accepted after Revision 21 April 2005

Publication Date:
20 September 2005 (online)

Abstract

The hypothalamus has long been recognized as a major site in the central nervous system (CNS) where a spectrum of internal and external environmental information is integrated for energy homeostasis. The isolation and sequencing of leptin in the mid 90 s, together with the demonstration of leptin administration’s ability to correct the obesity syndrome in leptin-deficient ob/ob mice and humans by suppressing food intake and weight gain in laboratory rodents, confirmed the hypothesized existence of a direct humoral signal from adipose tissue to the hypothalamus, thus integrating the energy-related signals. In the 80 s, neuropeptide Y (NPY) was identified as a potent appetite-stimulating neuropeptide produced, released and acting locally within the hypothalamus. This is recognized as a major physiological appetite transducer and central neurochemical substrate receiving, interpreting and processing incoming information on energy status. More recently, ghrelin, produced in the stomach and released into the general circulation, has drawn attention as the other limb of the feedback circuit that stimulates appetite at NPY network level. Prolonged fasting suppresses serum leptin, while suppressing TSH secretion. Intervention with leptin replacement can prevent fasting-induced changes in TSH, suggesting that leptin regulates TSH. Low leptin levels in sportsmen and sportswomen as well as in recreational runners are consistent with reduction in body fat, but are also influenced by the presence of low insulin, hypothyroxemia, and elevated cortisol levels. These metabolic adaptations to chronic energy deficits indicate a role in leptin regulation. A study within the general population found that activity levels and leptin were significantly negatively associated in both sexes. Circulating ghrelin levels, however, do not change during energy expenditure.

References

  • 1 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 425-432
  • 2 Caro J, Kolaczynski J, Nyce M, Ohannesian J, Opentanova I, Goldman W, Zhang P, Sinha M, Considine R. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance.  Lancet. 1996;  348 159-161
  • 3 Sahu A. Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance.  Frontiers in Neuroendocrinology. 2004;  24 225-253
  • 4 Kalra S, Bagnasco M, Otukonyong E, Dube M, Kalra P. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity.  Regulatory Peptides. 2003;  111 1-11
  • 5 Legradi G, Emerson C, Ahima R, Flier J, Lechan R. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus.  Endocrinology. 1997;  138 2569-2576
  • 6 Seoane L, Carro E, Tovar S, Casanueva F, Dieguez C. Regulation of in vivo TSH secretion by leptin.  Regulatory Peptides. 2000;  92 25-29
  • 7 Mantzoros C, Ozata M, Negrado A, Suchard M, Ziotopoulou M, Caglayan S, Elashoff R, Cogswell R, Negro P, Liberty V, Wong M, Velduis J, Ozdemir C, Gold P, Flier J, Licinio J. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: evidence for possible partial TSH regulation by leptin in humans.  J Clin Endocrinol Metab. 2001;  86 3284-3291
  • 8 Ozata M, Ozdemir I, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects.  J Clin Endocrinol Metab. 1999;  84 3686-3695
  • 9 Chan J, Heist K, De Paoli A, Veldhuis J, Mantzoros C. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men.  J Clin Invest. 2003;  111 1409-1421
  • 10 Flier J, Harris M, Hollenberg N. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring.  J Endocrin Invest. 2000;  105 859-861
  • 11 Sanchez V C, Goldstein J, Stuart R C, Hovanesian V, Huo L, Munzberg H, Friedman T C, Bjorbaek C, Nillni E A. Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone.  J Clin Invest. 2004;  114 357-369
  • 12 Fekete C, Sarkar S, Rand W M, Harney J W, Emerson C H, Bianco A C, Lechan R M. Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamus-pituitary-thyroid (HTP) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HTP axis.  Endocrinology. 2002;  143 3846-3853
  • 13 Kim M, Small C, Stanley S A, Morgan D G, Seal L J, Kong W M, Edward C M, Abusnana S, Sunter D, Ghatei M A, Bloom S R. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin.  J Clin Invest. 2000;  105 1005-1011
  • 14 Chowdhury I, Chien J T, Chatterjee A, Yu J Y. Effects of leptin and neuropeptide-Y on transcript levels of thyrotropin beta and common alpha subunits of rat pituitary in vitro.  Life Sci. 2004;  75 2897-2909
  • 15 Rosenbaum M, Murphy E, Heymsfield S, Matthews D, Leibel R. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones.  J Clin Endocrinol Metab. 2002;  87 2391-2394
  • 16 Hansen K, Krasnow S, Nolan M, Fraley G, Baumgartner J, Clifton D, Steiner R. Activation of the sympathetic nervous system by galanin-like peptide - A possible link between leptin and metabolism.  J Clin Endocrinol Metab. 2003;  144 4709-4717
  • 17 Van der Lely A J, Tschop M, Heiman M, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin.  Endocrine Rev. 2004;  25 426-457
  • 18 Korbonits M, Goldstone A, Gueorguiev M, Grossman A. Ghrelin - a hormone with multiple functions.  Frontiers in Neuroendocrinology. 2004;  25 27-68
  • 19 Inui A, Asakawa A, Bowers C, Manotvani G, Laviano A, Meguid M, Fujimiya M. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ.  The FASEB. 2004;  18 439-456
  • 20 Wren A, Seal L, Cohen M, Brynes A, Frost G, Murphy K, Dhillo W, Ghatei M, Bloom S. Ghrelin enhances appetite and increases food intake in Humans.  J Clin Endocrinol Metab. 2001;  86 5992-5995
  • 21 Cowley M, Grove K. Ghrelin - satisfying a hunger for the mechanism.  Endocrinology. 2004;  145 2604-2606
  • 22 Cummings D, Weigle D, Frayo R, Breen P, Ma M K, Dellinger E, Purnell J. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery.  N Engl J Med. 2002;  346 1623-1630
  • 23 Laughlin G, Yen S. Hypoleptinemia in women athletes: absence of a diurnal rhythm with amenorrhea.  J Clin Endocrinol Metab. 1997;  82 318-321
  • 24 Leal-Cerro A, Garcia-Luna P, Astorga R, Parejo J, Peino R, Dieguez C, Casanueva F. Serum leptin levels in male marathon athletes before and after the marathon run.  J Clin Endocrinol Metab. 1998;  83 2376-2379
  • 25 De Souza J, van Heest J, Demers L, Lasley B. Lutheal phase deficiency in recreational runners: evidence for a hypometabolic state.  J Clin Endocrinol Metab. 2003;  88 337-346
  • 26 Franks P, Farooqi S, Luan J, Wong M, Halsall I, O’Rahilly S, Wareham N. Does physical activity energy expenditure explain the between-individual variation in plasma leptin concentrations after adjusting for differences in body composition?.  J Clin Endocrinol Metab. 2003;  88 3258-3263
  • 27 Wauters M, Considine R, Van Gaal L. Human leptin: from an adipocyte hormone to an endocrine mediator.  Eur J Endocrinol. 2000;  143 293-311
  • 28 Seufert J, Keiffer T, Leech C, Holz G, Mortiz W, Ricordi C, Habener J. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus J.  Clin Endocrinol Metab. 1999;  84 670-676
  • 29 Lakka T, Rankinen T, Weisnagel J, Chagnon Y, Lakka H, Ukkola O, Boule N, Rice T, Leon A, Skinner J, Wilmore J, Rao D, Bergman R, Bouchard C. Leptin and leptin receptor gene polymorphisms and changes in glucose homeostasis in response to regular exercise in non-diabetic individuals - the HERITAGE family study.  Diabetes. 2004;  53 1603-1608
  • 30 Kraemer R, Durand R, Acevedo E, Johnson L, Kraemer G, Herbert E, Castracane V. Rigorous running increases growth hormone and insulin-like growth factor-I without altering ghrelin.  Exp Biol Med. 2004;  229 240-246

Prof. Dr. Vera Popovic M. D., Ph. D.

Neuroendocrine Unit · Institute of Endocrinology ·

University Clinical Center · Dr Subotic 13 · 11000 Belgrade · Serbia

Email: popver@eunet.yu