Subscribe to RSS
DOI: 10.1055/s-2005-870421
Towards Comprehension of the Physiological Role of UCP3
Publication History
Received 22 February 2005
Accepted after Revision 22 June 2005
Publication Date:
20 September 2005 (online)
Abstract
Thyroid hormones have long been known to stimulate energy expenditure partly via loss of metabolic efficiency. The mechanism underlying the loss in metabolic efficiency observed, however, is not yet understood. An important candidate gene responsible for thyroid hormone induced thermogenesis was identified in 1997 with the discovery of skeletal muscle-uncoupling protein 3 (UCP3), a protein with ∼ 60 % homology to the brown adipose tissue uncoupling protein 1 (UCP1). This short review summarizes our presentation held at the ‘Thyroid and Sports’ meeting; it does not aim to provide a concise overview of the available literature at this topic. Although induction of the UCP3 gene and increased protein expression during hyperthyroidism has been shown, there are no convincing data that increased UCP3 levels account for the increase in thermogenesis in the hyperthyroid state in humans. In contrast to cell and animal studies using ectopic overexpression of UCP3 as a model, induction of UCP3 in humans does not result in any apparent mitochondrial uncoupling. Hence, the primary physiological role of UCP3 may not be mitochondrial uncoupling, but uncoupling may occur as a side effect of a more pivotal role played by UCP3. Recently, UCP3 has been hypothesized to export fatty acid anions and/or lipid peroxides away from the mitochondrial matrix to prevent mitochondria from the harmful effects of peroxidized lipids. The present review aims to provide an overview of studies testing the feasibility of this unconventional function of UCP3.
Key words
Skeletal muscle - Exercise - Lipotoxicity - Mitochondrial dysfunction - Type 2 diabetes
References
- 1 Ravussin E, Lillioja S, Anderson T E, Christin L, Bogardus C. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest. 1986; 78 1568-1578
- 2 Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J. et al . Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997; 408 439-442
- 3 Ravussin E, Lillioja S, Knowler W C, Christin L, Freymond D, Abbott W G. et al . Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med. 1988; 318 467-472
- 4 Schrauwen P, Xia J, Bogardus C, Pratley R E, Ravussin E. Skeletal muscle uncoupling protein 3 expression is a determinant of energy expenditure in Pima Indians. Diabetes. 1999; 48 146-149
- 5 Schrauwen P, Westerterp-Plantenga M S, Kornips E, Schaart G, van Marken Lichtenbelt W D. The effect of mild cold exposure on UCP3 mRNA expression and UCP3 protein content in humans. Int J Obes Relat Metab Disord. 2002; 26 450-457
- 6 Sun X, Wray C, Tian X, Hasselgren P O, Lu J. Expression of uncoupling protein 3 is upregulated in skeletal muscle during sepsis. Am J Physiol Endocrinol Metab. 2003; 285 E512-520
- 7 Yu X X, Barger J L, Boyer B B, Brand M D, Pan G, Adams S H. Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. Am J Physiol Endocrinol Metab. 2000; 279 E433-446
- 8 Horvath T L, Diano S, Miyamoto S, Barry S, Gatti S, Alberati D. et al . Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice. Int J Obes Relat Metab Disord. 2003; 27 433-442
- 9 Hafner R P, Nobes C D, McGown A D, Brand M D. Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. Eur J Biochem. 1988; 178 511-518
- 10 Acin A, Rodriguez M, Rique H, Canet E, Boutin J A, Galizzi J P. Cloning and characterization of the 5' flanking region of the human uncoupling protein 3 (UCP3) gene. Biochem Biophys Res Commun. 1999; 258 278-283
- 11 Solanes G, Pedraza N, Calvo V, Vidal-Puig A, Lowell B B, Villarroya F. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region. Biochem J. 2005; 386 505-513
- 12 Gong D W, He Y, Karas M, Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem. 1997; 272 24 129-24 132
- 13 Lombardi A, Silvestri E, Moreno M, De Lange P, Farina P, Goglia F. et al . Skeletal muscle mitochondrial free-fatty-acid content and membrane potential sensitivity in different thyroid states: involvement of uncoupling protein-3 and adenine nucleotide translocase. FEBS Lett. 2002; 532 12-16
- 14 de Lange P, Lanni A, Beneduce L, Moreno M, Lombardi A, Silvestri E. et al . Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone. Endocrinology. 2001; 142 3414-3420
- 15 Moreno M, Lombardi A, De Lange P, Silvestri E, Ragni M, Lanni A. et al . Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q. Faseb J. 2003; 17 1112-1114
- 16 Echtay K S, Winkler E, Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000; 408 609-613
- 17 Echtay K S, Roussel D, St-Pierre J, Jekabsons M B, Cadenas S, Stuart J A. et al . Superoxide activates mitochondrial uncoupling proteins. Nature. 2002; 415 96-99
- 18 Schrauwen P, Troost F J, Xia J, Ravussin E, Saris W H. Skeletal muscle UCP2 and UCP3 expression in trained and untrained male subjects. Int J Obes Relat Metab Disord. 1999; 23 966-972
- 19 Clapham J C, Arch J R, Chapman H, Haynes A, Lister C, Moore G B. et al . Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature. 2000; 406 415-418
- 20 Millet L, Vidal H, Andreelli F, Larrouy D, Riou J P, Ricquier D. et al . Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J Clin Invest. 1997; 100 2665-2670
- 21 Jucker B M, Ren J, Dufour S, Cao X, Previs S F, Cadman K S. et al . 13C/31P NMR Assessment of Mitochondrial Energy Coupling in Skeletal Muscle of Awake Fed and Fasted Rats: Relationship with Uncoupling Protein 3 Expression. J Biol Chem. 2000; 275 39 279-39 286
- 22 Vidal-Puig A J, Grujic D, Zhang C Y, Hagen T, Boss O, Ido Y. et al . Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice. J Biol Chem. 2000; 275 16 258-16 266
- 23 Hesselink M K, Greenhaff P L, Constantin-Teodosiu D, Hultman E, Saris W H, Nieuwlaat R. et al . Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo. J Clin Invest. 2003; 111 479-486
- 24 Nedergaard J, Cannon B. The “novel” “uncoupling” proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol. 2003; 88 65-84
- 25 Russell A P, Wadley G, Hesselink M KC, Schaart G, Lo S, Leger B. et al . UCP3 protein expression is lower in type I, IIa and IIx muscle fiber types of endurance-trained compared to untrained subjects. Pflugers Arch. 2003; 445 563-569
- 26 Pilegaard H, Ordway G A, Saltin B, Neufer P D. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab. 2000; 279 E806-814
- 27 Hwang C S, Lane M D. Up-regulation of uncoupling protein-3 by fatty acid in C2C12 myotubes. Biochem Biophys Res Commun. 1999; 258 464-469
- 28 Weigle D S, Selfridge L E, Schwartz M W, Seeley R J, Cummings D E, Havel P J. et al . Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential explanation for the effect of fasting. Diabetes. 1998; 47 298-302
- 29 Jezek P. Fatty acid interaction with mitochondrial uncoupling proteins. J Bioenerg Biomembr. 1999; 31 457-466
- 30 Samec S, Seydoux J, Dulloo A G. Skeletal muscle UCP3 and UCP2 gene expression in response to inhibition of free fatty acid flux through mitochondrial beta-oxidation. Pflugers Arch. 1999; 438 452-457
- 31 Schrauwen P, Hesselink M K, Vaartjes I, Kornips E, Saris W H, Giacobino J P. et al . Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect. Am J Physiol Endocrinol Metab. 2002; 282 E11-17
- 32 Argyropoulos G, Brown A M, Willi S M, Zhu J, He Y, Reitman M. et al . Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J Clin Invest. 1998; 102 1345-1351
- 33 Hoeks J, Hesselink M K, van Bilsen M, Schaart G, van der Vusse G J, Saris W H. et al . Differential response of UCP3 to medium versus long chain triacylglycerols; manifestation of a functional adaptation. FEBS Lett. 2003; 555 631-637
- 34 Schrauwen P, Wagenmakers A J, van Marken Lichtenbelt W D, Saris W H, Westerterp K R. Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation. Diabetes. 2000; 49 640-646
- 35 Schrauwen P, Saris W H, Hesselink M K. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. Faseb J. 2001; 15 2497-2502
- 36 Schrauwen P, Russell A P, Moonen-Kornips E, Boon N, Hesselink M K. Effect of 2 weeks of endurance training on uncoupling protein 3 content in untrained human subjects. Acta Physiol Scand. 2005; 183 273-280
- 37 Schrauwen P, Hinderling V, Hesselink M K, Schaart G, Kornips E, Saris W H. et al . Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter. Faseb J. 2002; 16 1688-1690
- 38 Russell A P, Schrauwen P, Somm E, Gastaldi G, Hesselink M KC, Schaart G. et al . Decreased fatty acid b-oxidation in riboflavin-responsive multiple acylCoA dehydrogenase deficient patients is associated with an increase in UCP3. J Clin Endocrinol Metab. 2003; 88 in press
- 39 Himms-Hagen J, Harper M E. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood). 2001; 226 78-84
- 40 Skulachev V P. Anion carriers in fatty acid-mediated physiological uncoupling. J Bioenerg Biomembr. 1999; 31 431-445
- 41 de Lange P, Ragni M, Silvestri E, Moreno M, Schiavo L, Lombardi A. et al . Combined cDNA array/RT-PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptive function in energy metabolism during fasting. Faseb J. 2004; 18 350-352
- 42 Korshunov S S, Skulachev V P, Starkov A A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 1997; 416 15-18
- 43 Hoppeler H, Luthi P, Claassen H, Weibel E R, Howald H. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 1973; 344 217-232
- 44 Schrauwen P, Hesselink M K. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes. 2004; 53 1412-1417
- 45 Echtay K S, Esteves T C, Pakay J L, Jekabsons M B, Lambert A J, Portero-Otin M. et al . A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. Embo J. 2003; 22 4103-4110
- 46 Brand M D, Pamplona R, Portero-Otin M, Requena J R, Roebuck S J, Buckingham J A. et al . Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem J. 2002; 368 597-603
- 47 Schrauwen P, Hoeks J, Schaart G, Kornips E, Binas B, Van De Vusse G J. et al . Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. Faseb J. 2003; 17 2272-2274
- 48 Goglia F, Skulachev V P. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. Faseb J. 2003; 17 1585-1591
- 49 Schrauwen P, Hesselink M K, Blaak E E, Borghouts L B, Schaart G, Saris W H. et al . Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2001; 50 2870-2873
- 50 Kelley D E, He J, Menshikova E V, Ritov V B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002; 51 2944-2950
- 51 Ritov V B, Menshikova E V, He J, Ferrell R E, Goodpaster B H, Kelley D E. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005; 54 8-14
- 52 Russell A P, Gastaldi G, Bobbioni-Harsch E, Arboit P, Gobelet C, Deriaz O. et al . Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids?. FEBS Lett. 2003; 551 104-106
- 53 Mootha V K, Lindgren C M, Eriksson K F, Subramanian A, Sihag S, Lehar J. et al . PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34 267-273
- 54 Patti M E, Butte A J, Crunkhorn S, Cusi K, Berria R, Kashyap S. et al . Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003; 100 8466-8471
- 55 Brunmair B, Gras F, Wagner L, Artwohl M, Zierhut B, Waldhausl W. et al . Expression of uncoupling protein-3 mRNA in rat skeletal muscle is acutely stimulated by thiazolidinediones: an exercise-like effect?. Diabetologia. 2004; 47 1611-1614
- 56 Yki-Jarvinen H. Thiazolidinediones. N Engl J Med. 2004; 351 1106-1118
Matthijs Hesselink, Ph. D.
Department of Movement Sciences
Maastricht University · PO Box 616 · NL-6200 MD · Maastricht · The Netherlands
Phone: +31 (43) 388 13 17
Fax: +31 (43) 367 09 72 ·
Email: matthijs.hesselink@bw.unimaas.nl