Abstract
Thyroid hormones have long been known to stimulate energy expenditure partly via loss
of metabolic efficiency. The mechanism underlying the loss in metabolic efficiency
observed, however, is not yet understood. An important candidate gene responsible
for thyroid hormone induced thermogenesis was identified in 1997 with the discovery
of skeletal muscle-uncoupling protein 3 (UCP3), a protein with ∼ 60 % homology to
the brown adipose tissue uncoupling protein 1 (UCP1). This short review summarizes
our presentation held at the ‘Thyroid and Sports’ meeting; it does not aim to provide
a concise overview of the available literature at this topic. Although induction of
the UCP3 gene and increased protein expression during hyperthyroidism has been shown,
there are no convincing data that increased UCP3 levels account for the increase in
thermogenesis in the hyperthyroid state in humans. In contrast to cell and animal
studies using ectopic overexpression of UCP3 as a model, induction of UCP3 in humans
does not result in any apparent mitochondrial uncoupling. Hence, the primary physiological
role of UCP3 may not be mitochondrial uncoupling, but uncoupling may occur as a side
effect of a more pivotal role played by UCP3. Recently, UCP3 has been hypothesized
to export fatty acid anions and/or lipid peroxides away from the mitochondrial matrix
to prevent mitochondria from the harmful effects of peroxidized lipids. The present
review aims to provide an overview of studies testing the feasibility of this unconventional
function of UCP3.
Key words
Skeletal muscle - Exercise - Lipotoxicity - Mitochondrial dysfunction - Type 2 diabetes
References
- 1
Ravussin E, Lillioja S, Anderson T E, Christin L, Bogardus C.
Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory
chamber.
J Clin Invest.
1986;
78
1568-1578
- 2
Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J. et al .
Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific
expression.
FEBS Lett.
1997;
408
439-442
- 3
Ravussin E, Lillioja S, Knowler W C, Christin L, Freymond D, Abbott W G. et al .
Reduced rate of energy expenditure as a risk factor for body-weight gain.
N Engl J Med.
1988;
318
467-472
- 4
Schrauwen P, Xia J, Bogardus C, Pratley R E, Ravussin E.
Skeletal muscle uncoupling protein 3 expression is a determinant of energy expenditure
in Pima Indians.
Diabetes.
1999;
48
146-149
- 5
Schrauwen P, Westerterp-Plantenga M S, Kornips E, Schaart G, van Marken Lichtenbelt W D.
The effect of mild cold exposure on UCP3 mRNA expression and UCP3 protein content
in humans.
Int J Obes Relat Metab Disord.
2002;
26
450-457
- 6
Sun X, Wray C, Tian X, Hasselgren P O, Lu J.
Expression of uncoupling protein 3 is upregulated in skeletal muscle during sepsis.
Am J Physiol Endocrinol Metab.
2003;
285
E512-520
- 7
Yu X X, Barger J L, Boyer B B, Brand M D, Pan G, Adams S H.
Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial
proton leak kinetics.
Am J Physiol Endocrinol Metab.
2000;
279
E433-446
- 8
Horvath T L, Diano S, Miyamoto S, Barry S, Gatti S, Alberati D. et al .
Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice.
Int J Obes Relat Metab Disord.
2003;
27
433-442
- 9
Hafner R P, Nobes C D, McGown A D, Brand M D.
Altered relationship between protonmotive force and respiration rate in non-phosphorylating
liver mitochondria isolated from rats of different thyroid hormone status.
Eur J Biochem.
1988;
178
511-518
- 10
Acin A, Rodriguez M, Rique H, Canet E, Boutin J A, Galizzi J P.
Cloning and characterization of the 5' flanking region of the human uncoupling protein
3 (UCP3) gene.
Biochem Biophys Res Commun.
1999;
258
278-283
- 11
Solanes G, Pedraza N, Calvo V, Vidal-Puig A, Lowell B B, Villarroya F.
Thyroid hormones directly activate the expression of the human and mouse uncoupling
protein-3 genes through a thyroid response element in the proximal promoter region.
Biochem J.
2005;
386
505-513
- 12
Gong D W, He Y, Karas M, Reitman M.
Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone,
beta3-adrenergic agonists, and leptin.
J Biol Chem.
1997;
272
24 129-24 132
- 13
Lombardi A, Silvestri E, Moreno M, De Lange P, Farina P, Goglia F. et al .
Skeletal muscle mitochondrial free-fatty-acid content and membrane potential sensitivity
in different thyroid states: involvement of uncoupling protein-3 and adenine nucleotide
translocase.
FEBS Lett.
2002;
532
12-16
- 14
de Lange P, Lanni A, Beneduce L, Moreno M, Lombardi A, Silvestri E. et al .
Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic
rate by thyroid hormone.
Endocrinology.
2001;
142
3414-3420
- 15
Moreno M, Lombardi A, De Lange P, Silvestri E, Ragni M, Lanni A. et al .
Fasting, lipid metabolism, and triiodothyronine in rat gastrocnemius muscle: interrelated
roles of uncoupling protein 3, mitochondrial thioesterase, and coenzyme Q.
Faseb J.
2003;
17
1112-1114
- 16
Echtay K S, Winkler E, Klingenberg M.
Coenzyme Q is an obligatory cofactor for uncoupling protein function.
Nature.
2000;
408
609-613
- 17
Echtay K S, Roussel D, St-Pierre J, Jekabsons M B, Cadenas S, Stuart J A. et al .
Superoxide activates mitochondrial uncoupling proteins.
Nature.
2002;
415
96-99
- 18
Schrauwen P, Troost F J, Xia J, Ravussin E, Saris W H.
Skeletal muscle UCP2 and UCP3 expression in trained and untrained male subjects.
Int J Obes Relat Metab Disord.
1999;
23
966-972
- 19
Clapham J C, Arch J R, Chapman H, Haynes A, Lister C, Moore G B. et al .
Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic
and lean.
Nature.
2000;
406
415-418
- 20
Millet L, Vidal H, Andreelli F, Larrouy D, Riou J P, Ricquier D. et al .
Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and
lean humans.
J Clin Invest.
1997;
100
2665-2670
- 21
Jucker B M, Ren J, Dufour S, Cao X, Previs S F, Cadman K S. et al .
13C/31P NMR Assessment of Mitochondrial Energy Coupling in Skeletal Muscle of Awake
Fed and Fasted Rats: Relationship with Uncoupling Protein 3 Expression.
J Biol Chem.
2000;
275
39 279-39 286
- 22
Vidal-Puig A J, Grujic D, Zhang C Y, Hagen T, Boss O, Ido Y. et al .
Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice.
J Biol Chem.
2000;
275
16 258-16 266
- 23
Hesselink M K, Greenhaff P L, Constantin-Teodosiu D, Hultman E, Saris W H, Nieuwlaat R.
et al .
Increased uncoupling protein 3 content does not affect mitochondrial function in human
skeletal muscle in vivo.
J Clin Invest.
2003;
111
479-486
- 24
Nedergaard J, Cannon B.
The “novel” “uncoupling” proteins UCP2 and UCP3: what do they really do? Pros and
cons for suggested functions.
Exp Physiol.
2003;
88
65-84
- 25
Russell A P, Wadley G, Hesselink M KC, Schaart G, Lo S, Leger B. et al .
UCP3 protein expression is lower in type I, IIa and IIx muscle fiber types of endurance-trained
compared to untrained subjects.
Pflugers Arch.
2003;
445
563-569
- 26
Pilegaard H, Ordway G A, Saltin B, Neufer P D.
Transcriptional regulation of gene expression in human skeletal muscle during recovery
from exercise.
Am J Physiol Endocrinol Metab.
2000;
279
E806-814
- 27
Hwang C S, Lane M D.
Up-regulation of uncoupling protein-3 by fatty acid in C2C12 myotubes.
Biochem Biophys Res Commun.
1999;
258
464-469
- 28
Weigle D S, Selfridge L E, Schwartz M W, Seeley R J, Cummings D E, Havel P J. et al
.
Elevated free fatty acids induce uncoupling protein 3 expression in muscle: a potential
explanation for the effect of fasting.
Diabetes.
1998;
47
298-302
- 29
Jezek P.
Fatty acid interaction with mitochondrial uncoupling proteins.
J Bioenerg Biomembr.
1999;
31
457-466
- 30
Samec S, Seydoux J, Dulloo A G.
Skeletal muscle UCP3 and UCP2 gene expression in response to inhibition of free fatty
acid flux through mitochondrial beta-oxidation.
Pflugers Arch.
1999;
438
452-457
- 31
Schrauwen P, Hesselink M K, Vaartjes I, Kornips E, Saris W H, Giacobino J P. et al
.
Effect of acute exercise on uncoupling protein 3 is a fat metabolism-mediated effect.
Am J Physiol Endocrinol Metab.
2002;
282
E11-17
- 32
Argyropoulos G, Brown A M, Willi S M, Zhu J, He Y, Reitman M. et al .
Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient
and fat oxidation in severe obesity and type 2 diabetes.
J Clin Invest.
1998;
102
1345-1351
- 33
Hoeks J, Hesselink M K, van Bilsen M, Schaart G, van der Vusse G J, Saris W H. et
al .
Differential response of UCP3 to medium versus long chain triacylglycerols; manifestation
of a functional adaptation.
FEBS Lett.
2003;
555
631-637
- 34
Schrauwen P, Wagenmakers A J, van Marken Lichtenbelt W D, Saris W H, Westerterp K R.
Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived
fatty acid oxidation.
Diabetes.
2000;
49
640-646
- 35
Schrauwen P, Saris W H, Hesselink M K.
An alternative function for human uncoupling protein 3: protection of mitochondria
against accumulation of nonesterified fatty acids inside the mitochondrial matrix.
Faseb J.
2001;
15
2497-2502
- 36
Schrauwen P, Russell A P, Moonen-Kornips E, Boon N, Hesselink M K.
Effect of 2 weeks of endurance training on uncoupling protein 3 content in untrained
human subjects.
Acta Physiol Scand.
2005;
183
273-280
- 37
Schrauwen P, Hinderling V, Hesselink M K, Schaart G, Kornips E, Saris W H. et al .
Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial
fatty acid anion exporter.
Faseb J.
2002;
16
1688-1690
- 38
Russell A P, Schrauwen P, Somm E, Gastaldi G, Hesselink M KC, Schaart G. et al .
Decreased fatty acid b-oxidation in riboflavin-responsive multiple acylCoA dehydrogenase
deficient patients is associated with an increase in UCP3.
J Clin Endocrinol Metab.
2003;
88
in press
- 39
Himms-Hagen J, Harper M E.
Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty
acid oxidation predominates: an hypothesis.
Exp Biol Med (Maywood).
2001;
226
78-84
- 40
Skulachev V P.
Anion carriers in fatty acid-mediated physiological uncoupling.
J Bioenerg Biomembr.
1999;
31
431-445
- 41
de Lange P, Ragni M, Silvestri E, Moreno M, Schiavo L, Lombardi A. et al .
Combined cDNA array/RT-PCR analysis of gene expression profile in rat gastrocnemius
muscle: relation to its adaptive function in energy metabolism during fasting.
Faseb J.
2004;
18
350-352
- 42
Korshunov S S, Skulachev V P, Starkov A A.
High protonic potential actuates a mechanism of production of reactive oxygen species
in mitochondria.
FEBS Lett.
1997;
416
15-18
- 43
Hoppeler H, Luthi P, Claassen H, Weibel E R, Howald H.
The ultrastructure of the normal human skeletal muscle. A morphometric analysis on
untrained men, women and well-trained orienteers.
Pflugers Arch.
1973;
344
217-232
- 44
Schrauwen P, Hesselink M K.
Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes.
Diabetes.
2004;
53
1412-1417
- 45
Echtay K S, Esteves T C, Pakay J L, Jekabsons M B, Lambert A J, Portero-Otin M. et
al .
A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling.
Embo J.
2003;
22
4103-4110
- 46
Brand M D, Pamplona R, Portero-Otin M, Requena J R, Roebuck S J, Buckingham J A. et
al .
Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria
from mice underexpressing or overexpressing uncoupling protein 3.
Biochem J.
2002;
368
597-603
- 47
Schrauwen P, Hoeks J, Schaart G, Kornips E, Binas B, Van De Vusse G J. et al .
Uncoupling protein 3 as a mitochondrial fatty acid anion exporter.
Faseb J.
2003;
17
2272-2274
- 48
Goglia F, Skulachev V P.
A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix
by translocating fatty acid peroxides from the inner to the outer membrane leaflet.
Faseb J.
2003;
17
1585-1591
- 49
Schrauwen P, Hesselink M K, Blaak E E, Borghouts L B, Schaart G, Saris W H. et al
.
Uncoupling protein 3 content is decreased in skeletal muscle of patients with type
2 diabetes.
Diabetes.
2001;
50
2870-2873
- 50
Kelley D E, He J, Menshikova E V, Ritov V B.
Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes.
Diabetes.
2002;
51
2944-2950
- 51
Ritov V B, Menshikova E V, He J, Ferrell R E, Goodpaster B H, Kelley D E.
Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes.
Diabetes.
2005;
54
8-14
- 52
Russell A P, Gastaldi G, Bobbioni-Harsch E, Arboit P, Gobelet C, Deriaz O. et al .
Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans:
a case of good vs. bad lipids?.
FEBS Lett.
2003;
551
104-106
- 53
Mootha V K, Lindgren C M, Eriksson K F, Subramanian A, Sihag S, Lehar J. et al .
PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately
downregulated in human diabetes.
Nat Genet.
2003;
34
267-273
- 54
Patti M E, Butte A J, Crunkhorn S, Cusi K, Berria R, Kashyap S. et al .
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance
and diabetes: Potential role of PGC1 and NRF1.
Proc Natl Acad Sci U S A.
2003;
100
8466-8471
- 55
Brunmair B, Gras F, Wagner L, Artwohl M, Zierhut B, Waldhausl W. et al .
Expression of uncoupling protein-3 mRNA in rat skeletal muscle is acutely stimulated
by thiazolidinediones: an exercise-like effect?.
Diabetologia.
2004;
47
1611-1614
- 56
Yki-Jarvinen H.
Thiazolidinediones.
N Engl J Med.
2004;
351
1106-1118
Matthijs Hesselink, Ph. D.
Department of Movement Sciences
Maastricht University · PO Box 616 · NL-6200 MD · Maastricht · The Netherlands
Telefon: +31 (43) 388 13 17
Fax: +31 (43) 367 09 72 ·
eMail: matthijs.hesselink@bw.unimaas.nl