RSS-Feed abonnieren
DOI: 10.1055/s-2005-871569
A Simple Synthetic Approach to Allylated Aromatics via the Suzuki-Miyaura Cross-Coupling Reaction
Publikationsverlauf
Publikationsdatum:
07. Juli 2005 (online)
Abstract
The Pd-catalyzed cross-coupling reaction of aromatic iodides and bromides with allylboronic acid esters (2a,b) in the presence of CsF gave allylated aromatics.
Key words
allylation - palladium - boron - cross-coupling reaction - Suzuki coupling
-
1a
Keck GE.Enholm EJ.Yates JB.Wiley MR. Tetrahedron 1985, 41: 4079 -
1b
Farina V. Pure. Appl. Chem. 1996, 68: 73 -
1c
Varma RS.Naicker KP. Green Chem. 1999, 247 -
1d
Maruyama K.Imahori H.Osuka A.Takuwa A.Tagawa H. Chem. Lett. 1986, 1719 -
1e
Hanamoto T.Kobayashi T.Kondo M. Synlett 2001, 281 -
1f
Negishi E. J. Organomet. Chem. 2002, 653: 34 -
1g
Lipshutz BH.Frieman B.Pfeiffer SS. Synthesis 2002, 2110 -
1h
Ramachandran PV. Aldrichimica Acta 2002, 35: 23 -
1i
Tivola PB.Deagostino A.Prandi C.Venturello P. Org. Lett. 2002, 4: 1275 -
1j
Lopez-Ruiz H.Zard SZ. Chem. Commun. 2001, 2618 -
1k
Goldberg SD.Grubbs RH. Angew. Chem. Int. Ed. 2002, 41: 807 -
1l
Yamamoto Y.Takahashi M.Miyaura N. Synlett 2002, 1473 -
1m
Uozumi Y.Danjo H.Hayashi T. J. Org. Chem. 1999, 64: 3384 -
2a
Keck GE.Yates JB. J. Org. Chem. 1982, 47: 3590 -
2b
Bertrand F.Guyader FL.Liguori L.Ouvry G.Quiclet-Sire B.Seguin S.Zard SZ. C. R. Acad. Sci., Ser. IIc: Chim. 2001, 4: 547 - 3
Stefinovic M.Snieckus V. J. Org. Chem. 1998, 63: 2808 - 4
Miller SJ.Blackwell HE.Grubbs RH. J. Am. Chem. Soc. 1996, 118: 9606 -
5a
Handbook of Metathesis
Vol. 1-3:
Grubbs RH. Wiley-VCH; Berlin: 2003. -
5b
Kotha S.Sreenivasachary N. Indian J. Chem., Sect. B 2001, 40: 763 -
6a
Schuster M.Blechert S. Angew. Chem., Int. Ed. Engl. 1997, 36: 2036 -
6b
Phillips AJ.Abell AD. Aldrichimica Acta 1999, 32: 75 -
6c
Vernall AJ.Abell AD. Aldrichimica Acta 2003, 36: 93 -
7a
Okada A.Ohshima T.Shibasaki M. Tetrahedron Lett. 2001, 42: 8023 -
7b
Feng J.Schuster M.Blechert S. Synlett 1997, 12 -
8a
Ek F.Axelsson O.Wistrand LG.Frejd T. J. Org. Chem. 2002, 67: 6376 -
8b
Tiley JW.Sarabu R.Wanger R.Mulkerins K. J. Org. Chem. 1990, 55: 906 -
8c
Yamaguchi R.Otsuji A.Utimoto K.Kozima S. Bull. Chem. Soc. Jpn. 1992, 65: 298 -
8d
Gryko DT.Clausen C.Roth KM.Dontha N.Bocian DF.Kuhr WG.Lindsey JS. J. Org. Chem. 2000, 65: 7345 - 9
Wenkert E.Fersnandes JB.Michelotti EL.Swindell CS. Synthesis 1983, 701 - 10
Abbritti G.Matteis FD. Chem. Biol. Interact. 1972, 4: 281 -
11a
Troisi L.Florio S.Granito C. Steroids 2002, 67: 687 -
11b
Nemoto H.Satoh A.Fukumoto K. Tetrahedron 1995, 51: 10159 - 12
Brown MA.Kerr MA. Tetrahedron Lett. 2001, 42: 983 - 13
Ochiai M.Arimoto M.Fujita E. Tetrahedron Lett. 1981, 22: 4491 - 14
Price CC. Org. React. 1946, 3: 1 - 15
Kodomari M.Nawa S.Miyoshi T. J. Chem. Soc., Chem. Commun. 1995, 1895 - 16
Snieckus VA. Chem. Rev. 1990, 90: 879 -
17a
Stille JK. Angew. Chem., Int. Ed. Engl. 1985, 25: 508 -
17b
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 - 18
Heck RF. J. Am. Chem. Soc. 1968, 90: 5531 - 19
Kosugi M.Sasazawa K.Shimizu Y.Migita T. Chem. Lett. 1977, 301 -
20a
Kotha S.Lahiri K.Kashinath D. Tetrahedron 2002, 58: 9633 -
20b
Suzuki A.Brown HC. Organic Synthesis via Boranes Vol. 3: Aldrich Chemical Company Inc.; Milwaukee, USA: 2003. - 21
Molander GA.Yun C.-S. Tetrahedron 2002, 58: 1465 - 22 For review on B-alkyl Suzuki-Miyaura cross-coupling reaction see:
Chemler SR.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4544 - 23
Occhiato EG.Trabocchi A.Guarna A. J. Org. Chem. 2001, 66: 2459 -
24a
Kalinin VN.Denisov FS.Bubnov YN. Mendeleev Commun. 1996, 206 -
24b
Nilsson K.Hallberg A. Acta Chem. Scand. Ser. B 1987, 41: 569 -
25a
Fürstner A.Seidel G. Synlett 1998, 161 -
25b
Fürstner A.Leitner A. Synlett 2001, 290 - 26
Margaretha P.Reichow S.Agosta WC. J. Org. Chem. 1994, 59: 5393 - 27
Desurmont G.Dalton S.Giolando DM.Srebnik M. J. Org. Chem. 1996, 61: 7943 - 28
Bouyssi D.Gerusz V.Balme G. Eur. J. Org. Chem. 2002, 2445 - 32
Roush WR.Walts AE.Hoong LK. J. Am. Chem. Soc. 1985, 107: 8186 ; we have adopted this procedure for the preparation of 2b - 33
Tilley JW.Sarabu R.Wagner R.Mulkerins K. J. Org. Chem. 1990, 55: 906 - 34
Ek F.Axelsson O.Wistrand L.-G.Frejd T. J. Org. Chem. 2002, 67: 6376 - 35
Lee PH.Sung S.-Y.Lee K. Org. Lett. 2001, 3: 3201 - 36
Echavarren AM.Stille JK. J. Am. Chem. Soc. 1988, 110: 1557 - 37
Gomes P.Gosmini C.Perichon J. Org. Lett. 2003, 5: 1043 - 38
Cheng X.Prehm M.Das MK.Kain J.Baumeister U.Diele S.Leine D.Blume A.Tschierske C. J. Am. Chem. Soc. 2003, 125: 10977 - 40
Liu Z.Yasseri AA.Loewe RS.Lysenko AB.Malinovskii VL.Zhao Q.Surthi S.Li Q.Misra V.Lindsey JS.Bocian DF. J. Org. Chem. 2004, 69: 5568
References
Representative Experimental Procedure for Cross-Coupling Reaction.
A two-neck round-bottom flask was charged diiodo compound 1 (0.049 mmol), CsF (0.19 mmol), Pd(PPh3)4 (5-10 mol%) in THF (3 mL) and stirred for 30 min. Allyl boronic acid pinacol ester 2a (0.176 mmol) in THF (3 mL) was added and the resulting reaction mixture was heated to reflux for 24 h. Then, another portion of CsF (0.19 mmol) and Pd(PPh3)4 (5-10 mol%) were added and reaction was continued. At the end of the reaction (TLC monitoring), the reaction mixture was diluted with petroleum ether (bp 60-80 °C, 10 mL) followed by H2O. The layers were separated and the aqueous layer was extracted with petroleum ether (2 × 10 mL). The combined organic layers were washed with H2O (20 mL), brine (20 mL) and dried (Na2SO4). Evaporation of the solvent gave the crude product, which was purified by silica gel column chromatography. Elution of the column with 10% EtOAc-petroleum ether gave the diallylated product 3 (90%) as a white solid which was characterized by spectral data.
Spectral Data for Compound 3. Mp 64-68 °C. IR (neat): 3404, 1728, 1672 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.40 (t, 3 H, J = 7.4 Hz), 3.21-3.40 (m, 6 H), 3.70 (d, 2 H, J = 14.9 Hz), 4.30 (q, 2 H, J = 7.4 Hz), 5.00-5.12 (m, 4 H), 5.81-6.12 (m, 2 H), 6.22 (s, 1 H), 7.00-7.21 (m, 8 H), 8.21 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.2, 39.8, 40.7, 62.2, 67.6, 115.8, 128.5, 129.8, 133.7, 137.3, 138.8, 160.8, 172.0. HRMS (FAB): m/z [M + H]+ calcd for C25H29NO3: 392.2226; found: 392.2231.
31Compounds 4, [33] 6, [34] 7, [35] 9, [36] 10, [37] 11, [38] 12 [40] are reported in literature by different routes.
39
Spectral Data.
Compound 5: IR (neat): 3020, 1720, 1608, 1502, 1086 cm-1. 1H NMR (300 MHz, CDCl3): δ = 3.40 (d, J = 6.5 Hz, 2 H), 3.81-3.96 (m, 6 H), 5.02-5.09 (m, 2 H), 5.91-6.00 (m, 1 H), 6.90 (d, J = 8.7 Hz, 1 H), 7.29 (s, 1 H), 7.60 (d, J = 8.7 Hz, 1 H). 13C NMR (75.4 MHz, CDCl3): δ = 39.1, 52.1, 56.2, 112.2, 116.1, 119.8, 131.7, 133.7, 137.2, 157.6, 166.8. MS (EI, Q-TOF): m/z calcd for [C12H12O3 + Na]: 229.0841; found: 229.0850.
Compound 8: IR (neat): νmax = 1736, 1657, 1268, 1157, 1052 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.51 (s, 3 H), 3.59 (d, 2 H, J = 7.6 Hz), 5.15-5.22 (m, 2 H), 5.90-6.01 (m, 1 H), 6.84 (d, 1 H, J = 4.0 Hz), 7.55 (d, 1 H, J = 3.6 Hz). 13C NMR (75.4 MHz, CDCl3): δ = 26.6, 34.9, 117.5, 126.1, 133.0, 135.2, 142.8, 152.9, 190.6. MS (EI, Q-TOF): m/z [M + H]+ calcd for C9H10OS: 167.0531; found: 167.0530.