References
1a
Scott JW. In Asymmetric Synthesis
Vol. 4:
Morrison JD.
Scott JW.
Academic Press;
New York:
1984.
p.1
1b For a recent example, see: Fellows IM.
Kaelin DE.
Martin SF.
J. Am. Chem. Soc.
2000,
122:
10781
2a
Drauz D.
Waldmann H.
Enzyme Catalysis in Organic Synthesis
VCH;
Weinheim / New York:
1995.
2b
Schoffers E.
Golebiowski A.
Johnson CR.
Tetrahedron
1996,
52:
3769
2c
Garcia-Urdiales E.
Alfonso I.
Gotor V.
Chem. Rev.
2005,
105:
313
3a
Takabe K.
Iida Y.
Hiyoshi H.
Ono M.
Hirose Y.
Fukui Y.
Yoda H.
Mase N.
Tetrahedron: Asymmetry
2000,
11:
4825
3b
Takabe K.
Mase N.
Hashimoto H.
Tsuchiya A.
Ohbayashi T.
Yoda H.
Bioorg. Med. Chem. Lett.
2003,
13:
1967
3c
Murakami M.
Kamaya H.
Kaneko C.
Sato M.
Tetrahedron: Asymmetry
2003,
14:
201
3d
Takabe K.
Hashimoto H.
Sugimoto H.
Nomoto M.
Yoda H.
Tetrahedron: Asymmetry
2004,
15:
909
4a
Crout DHG.
Gaudet VSB.
Laumen K.
Schneider MP.
J. Chem. Soc., Chem. Commun.
1986,
808
4b
Xie Z.-F.
Nakamura I.
Suemune H.
Sakai K.
J. Chem. Soc., Chem. Commun.
1988,
9667
4c
Morgan B.
Dodds DR.
Zaks A.
Andrews DR.
Klesse R.
J. Org. Chem.
1997,
62:
7736
4d
Claudia N.
Williams JMJ.
Adv. Synth. Catal.
2003,
345:
835
5 For the use of 1-ethoxyvinyl 2-furanoate as an acylating agent to circumvent the problem, see; Akai S.
Naka T.
Fujita T.
Takebe Y.
Tsujino T.
Kita Y.
J. Org. Chem.
2002,
67:
411
6a
Mukaiyama T.
Tanabe Y.
Shimizu M.
Chem. Lett.
1984,
401
6b
Ichikawa J.
Asami M.
Mukaiyama T.
Chem. Lett.
1984,
949
6c
Harada T.
Hayashiya T.
Wada I.
Iwaake N.
Oku A.
J. Am. Chem. Soc.
1987,
109:
527
6d
Harada T.
Ikemura Y.
Nakajima H.
Ohnishi T.
Oku A.
Chem. Lett.
1990,
1441
6e
Otera J.
Sakamoto K.
Takao T.
Orita A.
Tetrahedron Lett.
1998,
39:
3201
6f
Akeboshi T.
Ohtsuka Y.
Ishihara T.
Sugai T.
Adv. Synth. Catal.
2001,
343:
624
7 For highly enantioselective, catalytic desymmetrization leading to mono-benzyloxy derivatives, see: Trost BM.
Mino T.
J. Am. Chem. Soc.
2003,
125:
2410
8
Harada T.
Imai K.
Oku A.
Synlett
2002,
972
For OXB-mediated asymmetric desymmetrization other prochiral polyols, see:
9a
Kinugasa M.
Harada T.
Oku A.
J. Am. Chem. Soc.
1997,
119:
9067
9b
Kinugasa M.
Harada T.
Oku A.
Tetrahedron Lett.
1998,
39:
4523
9c
Harada T.
Nakamura T.
Kinugasa M.
Oku A.
Tetrahedron Lett.
1999,
40:
503
9d
Harada T.
Yamanaka H.
Oku A.
Synlett
2001,
61
9e
Harada T.
Sekiguchi K.
Nakamura T.
Suzuki J.
Oku A.
Org. Lett.
2001,
3:
3309
10 Acetal 4a was prepared from 2-phenyl-1,3-propanediol and 1-naphthaldehyde (1.1 equiv) under the conventional conditions (p-TsOH, toluene reflux). A pure trans-isomer isolated by recrystallization from EtOAc and hexane (74% yield) was used in ring-cleavage reaction.
11 For the use of diethyl ether as an additive, see ref. 8 and 9d.
12
Harada T.
Nakamura T.
Kinugasa M.
Oku A.
J. Org. Chem.
1999,
64:
7594
13 The overall enantioselectivity of 6, for example, is calculated by [(syn-6 + anti-6) - (ent-syn-6 + ent-anti-6)}/{(syn-6 + anti-6) + (ent-syn-6 +
ent-anti-6)].
14
Representative Procedure for Catalytic Ring-Cleavage Reaction (Table 1, Entry 6).
To a solution of N-tosyl-3-(2-naphthyl)-l-alanine (57.5 mg, 0.15 mmol) in CH2Cl2 (1.6 mL) under argon atmosphere at r.t. was added dibromo-4-chlorophenylborane (23 µL, 0.15 mmol). After being stirred for 30 min, the mixture was concentrated in vacuo. To a solution of the resulting OXB 3 in CH2Cl2 (1.5 mL) at -50 °C were added dimethylsilyl ketene acetal 5d (428 mg, 2.25 mmol), Et2O (117 µL), and a toluene (1.5 mL) solution of acetal 4a (218 mg, 0.75 mmol). After being stirred for 18 h at -50 °C, the mixture was quenched by the addition of aq NaHCO3 and filtered. The filtrate was extracted three times with Et2O. The organic layers were dried (MgSO4) and concentrated in vacuo. The residue was treated with aq 70% HOAc (0.5 mL) in THF (0.5 mL) at r.t. for 1 h. The mixture was diluted with H2O, extracted three times with Et2O, and washed with aq NaHCO3. The organic layers were dried (MgSO4) and concentrated in vacuo. Purification of the residue by flash chromatography (SiO2, 5-20% EtOAc in hexane) gave 262 mg (83%) of 7a
8
(syn:anti = 15:1, 93% ee and 17% ee for syn- and anti-isomers, respectively). 1H NMR (500 MHz, CDCl3): δ = 1.53 (9 H, s), 2.41 (1 H, br), 2.90 (1 H, dd, J = 2.7, 15.4 Hz), 3.12 (1 H, dd, J = 8.3, 15.4 Hz) 3.19 (1 H, m), 3.68-3.80 (2 H, m), 3.88 (1 H, dd, J = 5.7, 11.0 Hz), 4.09 (1 H, dd, J = 7.6, 11.0 Hz), 5.61 (1 H, dd, J = 2.7, 8.3 Hz), 7.09-7.30 (5 H, m), 7.42-7.59 (4 H, m), 7.81 (1 H, d, J = 8.1 Hz), 7.89 (1 H, br d, J = 8.0 Hz), 8.15 (1 H, br d, J = 8.2 Hz) [a minor anti-isomer resonated at δ = 1.55 (9 H, s), 3.95 (1 H, dd, J = 5.0, 11.2 Hz)]. 13C NMR (125.8 MHz, CDCl3): δ = 29.8, 47.9, 48.5, 52.0, 65.3, 66.2, 71.7, 122.7, 123.9, 125.4, 125.7, 126.3, 126.8, 128.2, 128.38, 128.39, 129.0, 130.4, 133.8, 135.7, 139.9, 198.4. HPLC: ee determination (HPLC, Chiralpak AD-H, 1.0 mL/min, 3% 2-PrOH in hexane, (anti-
7a) τ1 = 31.3 min, (ent-syn-7a) τ2 = 34.3 min, (syn-7a) τ3 = 38.8 min, (ent-anti-7a) τ4 = 46.8 min).
15 For the intervention of the silyl ester derivative in asymmetric aldol reaction catalyzed by a relevant OXB, see: Parmee ER.
Tempkin O.
Masamune S.
J. Am. Chem. Soc.
1991,
113:
9365
16
Carreira EM.
Singer RA.
Lee W.
J. Am. Chem. Soc.
1994,
116:
8837
17a
Miura K.
Sato H.
Tamaki K.
Ito H.
Hosomi A.
Tetrahedron Lett.
1998,
39:
2585
17b
Miura K.
Tamaki K.
Nakagawa T.
Hosomi A.
Angew. Chem. Int. Ed.
2000,
39:
1958
17c
Nakagawa T.
Suda S.
Hosomi A.
Chem. Lett.
2000,
150
17d
Miura K.
Nakagawa T.
Hosomi A.
J. Am. Chem. Soc.
2002,
124:
536
17e
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2003,
2068
18 For the use of a dimethylsilyl ketene acetal in OXB-catalyzed asymmetric Michael reaction, see: Harada T.
Adachi S.
Wang X.
Org. Lett.
2004,
6:
4877
19 [α]D
25 -22.9 (c 1.06, CHCl3) {lit.6d [α]D +24.8 (c 1.00, CHCl3)}.