
Abstract
Since its introduction into organic chemistry more than fifty years ago, RuO4 has been used mainly as a strong oxidizing agent. Owing to its high reactivity, catalytic reactions employing RuO4 were often considered to be sluggish or unselective. However, within the past ten years, several groups have reported the development of new and selective oxidative transformations possible only under RuO4 catalysis. The present article summarizes the state of research in this field and tries to give a systematic overview of the reactivity and the reaction mode of RuO4. In the final section, relative reactivities between olefins or olefins and functional groups are discussed. The information provided in the present paper might serve as a good starting point for chemists interested in applying RuO4-catalyzed reactions in organic synthesis or methodology.
-
1 Introduction
-
1.1 Historical Development
-
1.2 Chemical Properties
-
2 Oxidation of C-H Bonds
-
2.1 Oxidation of C-H Bonds α to a Heteroatom
-
2.2 Oxidation of Saturated Hydrocarbons
-
3 Oxygen Transfer to Alkenes
-
3.1 Dihydroxylation and Ketohydroxylation
-
3.2 Oxidative Cyclization of Polyenes
-
4 Cleavage Reactions
-
4.1 Oxidative Cleavage of Single Bonds
-
4.2 Oxidative Cleavage of Double Bonds
-
4.2.1 Fragmentation of Alkenes
-
4.2.2 Oxidation of Aromatic Compounds
-
4.3 Oxygen Transfer to Alkynes
-
5 Oxidation of Heteroatoms
-
6 Reactivity Aspects
-
7 Conclusions
Key words
ruthenium - oxidations - catalysis - oxygen - oxygenation
References
1
Carbohydrate-based Drug Discovery
Wong C.-H.
Wiley-VCH;
Weinheim:
2003.
2a
Marquez-Alvarez C.
Sastre E.
Perez-Pariente J.
Top. Catal.
2004,
27:
105 ; and references cited therein
2b
Uhrich KE.
Cannizzaro SM.
Langer RS.
Shakesheff KM.
Chem. Rev.
1999,
99:
3181
3
Modern Oxidation Methods
Bäckvall J.-E.
Wiley-VCH;
Weinheim:
2004.
4
Metal-catalyzed Oxidations of Organic Compounds
Sheldon R.
Kochi JK.
Academic Press;
New York:
1981.
5
Djerassi C.
Engle RR.
J. Am. Chem. Soc.
1953,
75:
3838
6
Carlsen PHJ.
Katsuki T.
Martin VS.
Sharpless KB.
J. Org. Chem.
1981,
46:
3936
7
Piccialli V.
Smaldone DMA.
Sica D.
Tetrahedron
1993,
49:
4211
8a
Shing TKM.
Tai VW.-F.
Tam EKW.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2312 ; Angew. Chem. 1994, 106, 2408
8b
Shing TKM.
Tam EKW.
Tai VWF.
Chung IHF.
Jiang Q.
Chem. Eur. J.
1996,
2:
50
9 There was an early remark by Sharpless indicating that they managed to perform a dihydroxylation using RuO4, albeit in low yield: Sharpless KB.
Akashi K.
J. Am. Chem. Soc.
1976,
98:
1986 ; see ref. 3 therein
10
Piccialli V.
Sica D.
Smaldone D.
Tetrahedron Lett.
1995,
35:
7093
11a
Albarella L.
Lasalvia M.
Piccialli V.
Sica D.
J. Chem. Soc., Perkin Trans. 2
1998,
737
11b
Albarella L.
Piccialli V.
Smaldone D.
Sica D.
J. Chem. Res., Miniprint
1996,
2442
11c
Albarella L.
Piccialli V.
Smaldone D.
Sica D.
J. Chem. Res., Synop.
1996,
400
12a
Martin VS.
Palazon JM.
Rodriguez CM. In Oxidizing and Reducing Agents - Handbook of Reagents for Organic Synthesis
Burke SD.
Danheiser RL.
Wiley-VCH;
Weinheim:
1999.
p.346
12b
Courtney JL. In
Organic Syntheses by Oxidation with Metal Compounds
Mijs WJ.
de Jonge CRHI.
Plenum Press;
New York, London:
1986.
p.445
13a
Wolfe S.
Hasan SK.
Campbell JR.
J. Chem. Soc., Chem. Commun.
1970,
1420
13b
Gopal H.
Gordon AJ.
Tetrahedron Lett.
1971,
2941
14a
Berkowitz LM.
Rylander PN.
J. Am. Chem. Soc.
1958,
80:
6682
14b
Yamamoto Y.
Suzuki H.
Morooka Y.
Tetrahedron Lett.
1985,
26:
2107
15a
Schröder M.
Griffith WP.
J. Chem. Soc., Chem. Commun.
1979,
58
15b
Paquette LA.
Dressel J.
Pansegran PD.
Tetrahedron Lett.
1992,
33:
7719
16
Bailey AJ.
Griffith WP.
Marsden SP.
White AJP.
Williams DJ.
J. Chem. Soc., Dalton Trans.
1998,
3673
17
Giddings S.
Mills A.
J. Org. Chem.
1988,
53:
1103
18
Paquette LA.
Dressel J.
Pansegrau PD.
Tetrahedron Lett.
1987,
28:
4965
19
Connick RE.
Hurley CR.
J. Am. Chem. Soc.
1952,
74:
5012
20
The Chemistry of Ruthenium
Seddon EA.
Seddon KR.
Elsevier;
Amsterdam:
1984.
21
Dehand J.
Rosé J.
J. Chem. Res.
1979,
155
22
Boelrijk AEM.
Reedijk J.
J. Mol. Catal.
1994,
89:
63
23
Griffith WP.
Suriaatmaja M.
Can. J. Chem.
2001,
79:
598
24
Mills A.
Holland C.
J. Chem. Res.
1997,
368
25
Griffith WP.
Ley SV.
Whitcombe GP.
White AD.
J. Chem. Soc., Chem. Commun.
1987,
1625
26
Beattie JK.
Pure Appl. Chem.
1990,
62:
1145 ; and references cited therein
27
Hudlick M.
Oxidations in Organic Chemistry, ACS Monograph 186
American Chemical Society;
Washington:
1990.
p.114
28
Pastó M.
Castejón P.
Moyano A.
Pericàs MA.
Riera A.
J. Org. Chem.
1996,
61:
6033
29a
Plietker B.
Niggemann M.
Org. Lett.
2003,
5:
3353
29b
Plietker B.
Niggemann M.
Pollrich A.
Org. Biomol. Chem.
2004,
2:
1116
30
Niwa H.
Ito S.
Hasegawa T.
Wakamatsu K.
Mori T.
Yamada K.
Tetrahedron Lett.
1991,
32:
1329
31a
Nutt RF.
Arison B.
Holly FW.
Walton E.
J. Am. Chem. Soc.
1965,
87:
3272
31b
Nutt RF.
Dickinson MJ.
Holly FW.
Walton E.
J. Org. Chem.
1968,
33:
1789
31c
Beynon PJ.
Collins PM.
Overend WG.
Proc. Chem. Soc., London
1964,
342
32
Caputo JA.
Fuchs R.
Tetrahedron Lett.
1967,
4729
33
Meyer K.
Rocek J.
J. Am. Chem. Soc.
1972,
94:
1209
34
Lee DG.
Spitzer UA.
Cleland J.
Olson ME.
Can. J. Chem.
1976,
54:
2124
35
Yamaoka H.
Moriya N.
Ikunaka M.
Org. Process Res. Dev.
2004,
8:
931
36
Felix AM.
Earley JV.
Fryer RI.
Sternbach LH.
J. Heterocycl. Chem.
1968,
5:
731
37
Deng L.
Ziegler T.
Organometallics
1997,
16:
716
38
Plietker B.
Org. Lett.
2004,
6:
289
For the asymmetric α-hydroxylation of ketones, see:
39a
Morikawa K.
Park J.
Andersson PG.
Hashiyama T.
Sharpless KB.
J. Am. Chem. Soc.
1993,
115:
8463
39b
Momiyama N.
Yamamoto H.
J. Am. Chem. Soc.
2003,
125:
6038
39c
Brown SP.
Brochu MP.
Sinz CJ.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
10808
39d
Zhoung G.
Angew. Chem. Int. Ed.
2003,
42:
4247 ; Angew. Chem. 2003, 115, 4379
39e
Bogevig A.
Sundén H.
Córdova A.
Angew. Chem. Int. Ed.
2004,
43:
1109 ; Angew. Chem. 2004, 116, 1129
39f
Hayashi Y.
Yamaguchi J.
Sumiya T.
Shoji M.
Angew. Chem. Int. Ed.
2004,
43:
1112 ; Angew. Chem. 2004, 116, 1132
For the asymmetric acyloin condensation, see:
40a
Enders D.
Kallfass U.
Angew. Chem. Int. Ed.
2002,
41:
1743 ; Angew. Chem. 2002, 114, 1822
40b
Dünkelmann P.
Kolter-Jung D.
Nitsche A.
Demir AS.
Siegert P.
Lingen B.
Baumann M.
Pohl M.
Müller M.
J. Am. Chem. Soc.
2002,
124:
12084
40c
Demir AS.
Sesenoglu O.
Eren E.
Hosrik B.
Pohl M.
Janzen E.
Kolter D.
Feldmann R.
Duenkelmann P.
Müller M.
Adv. Synth. Catal.
2002,
1:
96 ; and references cited therein
41
Booker-Milburn KI.
Cowell JK.
Tetrahedron Lett.
1996,
37:
2177
42a
Schuda PF.
Cichowicz MB.
Heimann MR.
Tetrahedron Lett.
1983,
24:
3829
42b
Takeda R.
Zask A.
Nakanishi K.
Park MH.
J. Am. Chem. Soc.
1987,
109:
914
43
Nevill CR.
Angell PT.
Tetrahedron Lett.
1998,
39:
5671
44
Lin G.
Midha KK.
Hawes EM.
J. Heterocycl. Chem.
1991,
28:
215
45
Tanaka K.-I.
Sawanishi H.
Tetrahedron: Asymmetry
1998,
9:
71
46a
Hernández R.
Suarez E.
J. Org. Chem.
1994,
59:
2766
46b
U JS.
Park HS.
Gupta S.
Cha JK.
Synth. Commun.
1997,
27:
2931
47
Bakke JM.
Frøhaug AE.
J. Phys. Org. Chem.
1996,
9:
310
48a
Tenaglia A.
Terranova E.
Waegell B.
J. Chem. Soc., Chem. Commun.
1990,
1344
48b
Bakke JM.
Bränden JE.
Acta Chem. Scand.
1991,
45:
418
48c
Tenaglia A.
Terranova E.
Waegell B.
J. Org. Chem.
1992,
57:
5523
49
Coudret JL.
Waegell B.
Inorg. Chim. Acta
1994,
222:
115
50
Carlsen PHJ.
Synth. Commun.
1987,
17:
19
51
Coudret JL.
Zöllner S.
Ravoo BJ.
Malara L.
Hanisch C.
Dörre K.
de Meijere A.
Waegell B.
Tetrahedron Lett.
1996,
37:
2425
52
Sica D.
Recent Res. Dev. Org. Chem.
2003,
7:
105 ; and references cited therein
53
Notaro D.
Piccialli V.
Sica D.
Smaldone D.
Tetrahedron
1994,
50:
4835
54 An interesting application in the total synthesis of brassinolide was recently published: Massey AP.
Pore VS.
Hazra BG.
Synthesis
2003,
426
55
Friedrich M.
Savchenko AI.
Wächtler A.
de Meijere A.
Eur. J. Org. Chem.
2003,
2138
56a
Angermann J.
Homann K.
Reissig H.-U.
Zimmer R.
Synlett
1995,
1014
56b
Zimmer R.
Homann K.
Angermann J.
Reissig H.-U.
Synthesis
1999,
1223
57
Plietker B.
Niggemann M.
J. Org. Chem.
2005,
70:
2402
58
Couturier M.
Andresen BM.
Jorgensen JB.
Tucker JL.
Busch FR.
Brenek SJ.
Dubé P.
am Ende DJ.
Negri JT.
Org. Process Res. Dev.
2002,
6:
42
59
Laux M.
Krause N.
Synlett
1997,
765
60
Khan FA.
Prabhundas B.
Dash J.
Sahu N.
J. Am. Chem. Soc.
2000,
122:
9558
61a
Plietker B.
J. Org. Chem.
2003,
68:
7123
61b
Plietker B.
J. Org. Chem.
2004,
69:
8287
61c
Plietker B.
Eur. J. Org. Chem.
2005,
1919
62
Plietker B.
Niggemann M.
Org. Biomol. Chem.
2004,
2:
2403
63a
Cha JK.
Christ WJ.
Kishi Y.
Tetrahedron
1984,
40:
2247
63b
Cha JK.
Kim N.-S.
Chem. Rev.
1995,
95:
1761
64a
Stork G.
Kahn M.
Tetrahedron Lett.
1983,
24:
3951
64b
Houk KN.
Moses SR.
Wu Y.-D.
Rondan NG.
Jäger V.
Schohe R.
Fronczek FR.
J. Am. Chem. Soc.
1984,
106:
3880
64c
Vedejs E.
McClure CK.
J. Am. Chem. Soc.
1986,
108:
1094
64d For a detailed comparison based upon DFT calculation, see: Haller J.
Strassner T.
Houk KN.
J. Am. Chem. Soc.
1997,
119:
8031
65
Frunzke J.
Loschen C.
Frenking G.
J. Am. Chem. Soc.
2004,
126:
3642
66
Strassner T.
Drees M.
J. Mol. Structure - THEOCHEM
2004,
671:
197
67a
Piccialli V.
Cavallo N.
Tetrahedron Lett.
2001,
42:
4695
67b
Bifulco G.
Caserta T.
Gomez-Paloma L.
Piccialli V.
Tetrahedron Lett.
2002,
43:
9265
67c
Bifulco G.
Caserta T.
Gomez-Paloma L.
Piccialli V.
Tetrahedron Lett.
2003,
44:
5499
68
Albarella L.
Musumeci D.
Sica D.
Eur. J. Org. Chem.
2001,
997
69
Roth S.
Göhler S.
Cheng H.
Stark CBW.
Eur. J. Org. Chem.
2005, in press
70
Piccialli V.
Tetrahedron Lett.
2000,
41:
3731
71
Martin VS.
Nunez MT.
Tonn CE.
Tetrahedron Lett.
1988,
29:
2701
72
Wang GT.
Wang S.
Chen Y.
Gentles R.
Sowin T.
J. Org. Chem.
2001,
66:
2052
73
Ranganathan D.
Saini S.
J. Am. Chem. Soc.
1991,
113:
1042
74
Ferraz HMC.
Longo LS.
Org. Lett.
2003,
5:
1337
75a
Mori K.
Miyake M.
Tetrahedron
1987,
43:
2229
75b
Smith AB.
Scarborough RM.
Synth. Commun.
1980,
10:
205
76
Wolfe S.
Hasan SK.
Campbell JR.
J. Chem. Soc., Chem. Commun.
1970,
1420
77
Yang D.
Zhang C.
J. Org. Chem.
2001,
66:
4814
78
Mehta G.
Krishnamurthy N.
J. Chem. Soc., Chem. Commun.
1986,
1319
79
Jayaraman M.
Srirajan V.
Deshmukh ARAS.
Bhawal BM.
Tetrahedron
1996,
52:
3741
80a
Hartmann B.
Deprés JP.
Greene AE.
Freire de Lima ME.
Tetrahedron Lett.
1993,
34:
1487
80b
Deprés JP.
Coelho F.
Greene AE.
J. Org. Chem.
1985,
50:
1972
81
Tochtermann W.
Haase M.
Dibbern R.
Tetrahedron Lett.
1988,
29:
189
82
Hwang KC.
J. Chem. Soc., Chem. Commun.
1995,
173
83
Quittmann W.
Roberge DM.
Bessard Y.
Org. Process Res. Dev.
2004,
8:
1036
84
Griffith WP.
Kwong E.
Synth. Commun.
2003,
33:
2945
85
Bäumer U.-St.
Schäfer HJ.
Electrochim. Acta
2003,
48:
489
86
Kaneda K.
Haruna S.
Imanaka T.
Kawamoto K.
J. Chem. Soc., Chem. Commun.
1990,
1467
87a
Lee DG.
Spitzer UA.
J. Org. Chem.
1976,
41:
3644
87b
Lee DG.
Chang VS.
Helliwell S.
J. Org. Chem.
1976,
41:
3644
87c
Lee DG.
Helliwell S.
Chang VS.
J. Org. Chem.
1976,
41:
3646
For some representative examples, see:
88a
Piatak DM.
Herbst G.
Wicha J.
Caspi E.
J. Org. Chem.
1969,
34:
116
88b
Imajo S.
Kuritani H.
Shingu K.
Nakagawa M.
J. Org. Chem.
1979,
44:
3587
88c
Kasai M.
Ziffer H.
J. Org. Chem.
1983,
48:
2346
89
Spitzer UA.
Lee DG.
J. Org. Chem.
1974,
39:
2468
90
Rosen TC.
De Clercq E.
Balzarini J.
Haufe G.
Org. Biomol. Chem.
2004,
2:
229
91
Ferraboschi P.
Grisenti P.
Manzocchi A.
Santaniello E.
J. Chem. Soc., Perkin Trans. 1
1990,
2470
92
Ramalingam K.
Nanjappan P.
Kalvin DM.
Woodard RW.
Tetrahedron
1988,
44:
5597
93
Hu J.
Zhang D.
Harris FW.
J. Org. Chem.
2005,
70:
707
For selected examples, see:
94a
Kusakabe M.
Kitano Y.
Kobayashi Y.
Sato F.
J. Org. Chem.
1989,
54:
2085
94b
Danishefsky SJ.
Maring C.
J. Am. Chem. Soc.
1985,
107:
7762
94c
Brown AD.
Colvin EW.
Tetrahedron Lett.
1991,
32:
5187
94d
Johnson CR.
Adams JP.
Collins MA.
J. Chem. Soc., Perkin Trans. 1
1993,
1
95
Danishefsky SJ.
DeNinno MP.
Chen S.
J. Am. Chem. Soc.
1988,
110:
3929
96a
Carling RW.
Holmes AB.
Tetrahedron Lett.
1986,
27:
6133
96b
Zibuck R.
Seebach D.
Helv. Chim. Acta
1988,
71:
237
96c
Carling RW.
Clark JS.
Holmes AB.
Sartor D.
J. Chem. Soc., Perkin Trans. 1
1992,
95
97
Pattenden G.
Tankard M.
Tetrahedron Lett.
1993,
34:
2677
98
Griffith WP.
Shoair AG.
Suriaatmaja M.
Synth. Commun.
2000,
30:
3091
99
Yang D.
Chen F.
Dong Z.-M.
Zhang D.-W.
J. Org. Chem.
2004,
69:
2221
100a
Petride H.
Costan O.
Draghici C.
Florea C.
Petride A.
Arkivoc
2005,
x:
18
100b
Petride H.
Draghici C.
Florea C.
Petride A.
Central Eur. J. Chem.
2004,
2:
302
100c
Sharma VB.
Jain SL.
Sain B.
Tetrahedron Lett.
2004,
45:
4281
101
Rodriguez CM.
Ode JM.
Palazon JM.
Martin VS.
Tetrahedron
1992,
48:
3571
102a
Glass RS.
Broeker JL.
Tetrahedron
1991,
47:
5077
102b
Su W.
Tetrahedron Lett.
1994,
35:
4955
103a
Veale HS.
Levin J.
Swern D.
Tetrahedron Lett.
1978,
503
103b
Ketcha DM.
Swern D.
Synth. Commun.
1984,
14:
915
103c
Orita A.
An DL.
Nakano T.
Yaruva J.
Ma N.
Otera J.
Chem. Eur. J.
2002,
8:
2005
104
Gao Y.
Sharpless KB.
J. Am. Chem. Soc.
1988,
110:
7538
105
Sun P.
Weinreb SM.
J. Org. Chem.
1997,
62:
8604
106
Borg G.
Chino M.
Ellman JA.
Tetrahedron Lett.
2001,
42:
1433
107
Mueller RH.
DiPardo RM.
J. Chem. Soc., Chem. Commun.
1975,
565
108 Plietker B., manuscript in preparation.
109
Miranda LSM.
Vasconcellos MLAA.
Synthesis
2004,
1767
110a
Bakke JM.
Bethell D.
Acta Chem. Scand.
1992,
46:
644
110b
Bakke JM.
Frohaug AE.
Acta Chem. Scand.
1995,
49:
615
111
Clinch K.
Vasella A.
Schauer R.
Tetrahedron Lett.
1987,
28:
6425
112
Askin D.
Angst C.
Danishefsky S.
J. Org. Chem.
1987,
52:
622
113
Colletti SL.
Li C.
Fisher MH.
Wyvratt MJ.
Meinke PT.
Tetrahedron Lett.
2000,
41:
7825
114
Kolb HC.
Van Nieuwenhenze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2487
115
Johnson RA.
Sharpless KB. In
Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley-VCH;
Weinheim:
2000.
p.357