Subscribe to RSS
DOI: 10.1055/s-2005-872232
Substituent-Dictated Concise Synthesis of 4,6-Disubstituted N-Alkyl-2-pyridones and 2-Aminopyridines [1]
Publication History
Publication Date:
20 July 2005 (online)
Abstract
Functionalized N-alkyl-2-pyridones and 2-aminopyridines are useful precursors for the synthesis of various heterocyclic compounds of therapeutic importance. In this paper we have delineated and illustrated a direct methodology for the synthesis of 6-aryl-N-hydroxyethyl-4-methylsulfanyl-2-pyridones through the ring transformation of 6-aryl-3-cyano-4-methylsulfanyl-2H-pyran-2-ones by ethanolamine. Surprisingly, the analogous reaction with 6-aryl-3-cyano-4-piperidin-1-yl-2H-pyran-2-ones afforded 2-aminopyridines in high yield instead of the corresponding 2-pyridones.
Keywords
N-alkyl-2-pyridone - 2-aminopyridine - ethanolamine - pyran-2-one - ring transformation reaction
C.D.R.I. Communication No. 6650.
-
2a
Fodor GB.Colasanti B. In Alkaloids: Chemical and Biological Perspectives Vol. 3:Pelletier SW. Wiley; New York: 1985. p.1-90 -
2b
Cai JC.Hutchinson CR. The Alkaloid: Chemistry and Pharmacology Vol. 21:Brossi A. Academic Press; New York: 1983. p.101 -
2c
Schultz AG. Chem. Rev. 1973, 73: 385 -
2d
Curran DP.Liu H. J. Am. Chem. Soc. 1992, 114: 5863 -
2e
Liu H.Ko S.-B.Josien H.Curran DP. Tetrahedron Lett. 1995, 36: 8917 - 3
Sata N.Shibata T.Jitsuoka M.Ohno T.Takahashi T.Hirohashi T.Kanno T.Iwaasa H.Kanatani A.Fukami T. Bioorg. Med. Chem. Lett. 2004, 14: 1761 - 4
Carlsson C.Rosen I.Nilsson E. Acta Anaesthesiol. Scand. 1993, 27: 87 - 5
Kelly T.Bell S.Osashi N.Armstrong-Chong J. J. Am. Chem. Soc. 1988, 110: 6471 -
6a
Cox R.O’Hagan D. J. Chem. Soc., Perkin Trans. 1 1991, 2537 -
6b
Rigby J.Balasubramanian N. J. Org. Chem. 1989, 54: 224 - 7
Williams D.Lowder P.Gu Y.-G. Tetrahedron Lett. 1997, 38: 327 - 8
Teshima Y.Shin-ya K.Shimazu A.Furihota K.Chul HS.Furihata K.Hayakawa Y.Nagai K.Seto H. J. Antibiot. 1991, 44: 685 - 9
Matyus P.Kasztreiner E.Diesler E.Behr A.Varga I.Kosary J.Rabloczky G.Jaszlits L. Arch. Pharm. (Weinheim, Ger.) 1994, 327: 543 - 10
Narusevicius E.Garaliene V.Krauze A.Duburs G. Khim.-Farm. Zh. 1989, 23: 1459 - 11
Niño A.Muñoz-Caro C.Carbò-Dorca R.Gironés X. Biophys. Chem. 2003, 104: 417 -
12a
Höfle G.Steglich W.Vorbrüggen H. Angew. Chem., Int. Ed. Engl. 1978, 17: 569 -
12b
Hassner A.Krepski LR.Alexanian V. Tetrahedron 1978, 34: 2069 -
12c
Scriven EFV. Chem. Soc. Rev. 1983, 12: 129 -
12d
Ragnarsson U.Grehn L. Acc. Chem. Res. 1998, 31: 494 -
13a
Tieckelmann H. In Heterocyclic Compounds, Pyridine and Its Derivatives Supplement, Part 3:Abramovitch RA. Wiley-Intersciences; New York: 1974. p.597 -
13b
Murray T.Zimmerman S. Tetrahedron Lett. 1995, 36: 7627 - 14
Comins DL.Jianhua G. Tetrahedron Lett. 1994, 35: 2819 -
15a
Decker H. Ber. Dtsch. Chem. Ges. 1892, 25: 443 -
15b
Mohrle H.Weber H. Tetrahedron 1970, 26: 2953 - 16
McKillop A.Boulton AJ. In Comprehensive Heterocyclic Chemistry Vol. 2:Katritzky AR.Rees CW. Pergamon Press; New York: 1984. p.460 - 17
Jones G. In Comprehensive Heterocyclic Chemistry Vol. 2:Katritzky AR.Rees CW. Pergamon Press; New York: 1984. p.395 - 18
Rastogi RR.Kumar A.Ila H.Junjappa H. J. Chem. Soc., Perkin Trans. 1 1978, 549 - 19
Ghosez L.Jnoff E.Bayard P.Sainte F.Beaudegnies R. Tetrahedron 1999, 55: 3387 - 20
Brun EM.Gil S.Mestres R.Parra M. Synthesis 2000, 273 - 21
Takaoka K.Aoyama T.Shioiri T. Tetrahedron Lett. 1996, 37: 4973 -
22a
Schore NE. Chem. Rev. 1988, 88: 1081 -
22b
Mirkin CA.Lu K.-L.Snead TE.Geoffroy GL.Rheingold AL. J. Am. Chem. Soc. 1990, 112: 2809 - 23
Vorbrüggen H. Adv. Heterocycl. Chem. 1990, 49: 117 -
24a
Victory P.Borrell JI.Vidal-Ferran A. Heterocycles 1993, 36: 769 -
24b
Manna F.Chimenti F.Bolasco A.Bizzarri B.Filippelli W.Filippelli A.Gagliardi L. Eur. J. Med. Chem. 1999, 34: 245 -
24c
Sakurai A.Midorikawa H. Bull. Chem. Soc. Jpn. 1968, 41: 430 -
25a
Cuperly D.Gros P.Fort Y. J. Org. Chem. 2002, 67: 238 -
25b
Katritzky AR.Belyakov SA.Sorochinsky AE.Henderson SA.Chen J. J. Org. Chem. 1997, 62: 6210 - 26
Goel A.Singh FV.Sharon A.Maulik PR. Synlett 2005, 623 -
27a
Hartwig JF. Synlett 1997, 116 -
27b
Hartwig JF. Angew. Chem., Int. Ed. Engl. 1998, 37: 2046 -
27c
Frost CG.Mendonça P. J. Chem. Soc., Perkin Trans. 1 1998, 2615 -
27d
Belfield AJ.Brown GR.Foubister AJ. Tetrahedron 1999, 55: 11399 -
28a
Jaime-Figueroa S.Liu Y.Muchowski J.Putman D. Tetrahedron Lett. 1998, 39: 1313 -
28b
Wagaw S.Buchwald SL. J. Org. Chem. 1996, 61: 7240 -
28c
Wolfe JP.Buchwald SL. J. Am. Chem. Soc. 1997, 119: 6054 -
28d
Marcoux J.-F.Wagaw S.Buchwald SL. J. Org. Chem. 1997, 62: 1568 -
29a
Tominaga Y.Ushirogouchi A.Matsuda Y.Kobayashi G. Chem. Pharm. Bull. 1984, 32: 3384 -
29b
Tominaga Y.Ushirogouchi A.Matsuda Y. J. Heterocycl. Chem. 1987, 24: 1557
References
C.D.R.I. Communication No. 6650.
30Synthesis of 6-aryl- N -hydroxyethyl-4-methylsulfanyl-2 (1 H )-pyridones 3a-e and 6-aryl-3-carbomethoxy/cyano-4-(2-hydroxyethyl-amino)-2 H -pyran-2-ones 2a-e; General procedure: A mixture of 6-aryl-3-cyano-4-methylsulfanyl-2H-pyran-2-ones (1, 1 mmol) and ethanolamine (1.2 mmol) was refluxed in EtOH for 1-4 h. After completion, the reaction was cooled to r.t. and left overnight. The white crystalline solid 3 was filtered off and washed with EtOH. The filtrate was evaporated to dryness and pure compound 2 was isolated by column chromatography using CHCl3 as an eluent.
31Spectroscopic and elemental analyses data of selected compounds. 2a: white solid; mp 140-142 °C; IR (KBr): 1630 (CO), 3427 cm-1 (OH); 1H NMR (200 MHz, CDCl3): δ = 2.44 (s, 3 H, SCH3), 3.72-3.75 (m, 2 H, CH2), 4.03 (t, J = 4.9 Hz, 2 H, CH2), 4.16 (t, J = 4.9 Hz, 1 H, OH), 6.03 (d, J = 2.0 Hz, 1 H, CH), 6.33 (d, J = 2.0 Hz, 1 H, CH), 7.28-7.33 (m, 2 H, ArH), 7.43-7.48 (m, 3 H, ArH); MS (FAB): m/z = 262 (M+ + 1); Anal. Calcd for C14H15NO2S: C, 64.34; H, 5.79; N, 5.36. Found: C, 64.07; H, 5.92; N, 5.25. 3a: white solid; mp 248-250 °C; IR (KBr): 1687 (CO), 2216 (CN), 3271 (NH), 3401 cm-1 (OH); 1H NMR (200 MHz, DMSO-d 6): δ = 3.57 (s, 4 H, 2 CH2), 4.90 (br s, 1 H, OH), 7.04 (s, 1 H, CH), 7.55-7.58 (m, 3 H, ArH), 7.93-7.97 (m, 2 H, ArH), 8.30 (br s, 1 H, NH); MS (FAB): m/z = 257 (M+ + 1); Anal. Calcd for C14H12N2O3: C, 65.62; H, 4.72; N, 10.93. Found: C, 65.65; H, 4.51; N, 10.83. 7: white solid; mp 236-237 °C; IR (KBr): 1657, 1688 (CO), 3403 cm-1 (OH); 1H NMR (200 MHz, DMSO-d 6): δ = 3.63-3.66 (m, 4 H, 2 CH2), 3.74 (s, 3 H, OCH3), 5.08 (br s, 1 H, OH), 6.97 (s, 1 H, CH), 7.53-7.58 (m, 3 H, ArH), 7.96-8.00 (m, 2 H, ArH), 10.05 (br s, 1 H, NH); MS (FAB): m/z = 290 (M+ + 1); Anal. Calcd for C15H15NO5: C, 62.28; H, 5.23; N, 4.84. Found: C, 62.31; H, 5.26; N, 4.48. 9a: white solid; mp 124-126 °C; IR (KBr): 3370 (NH), 3469 (NH) cm-1; 1H NMR (200 MHz, CDCl3): δ = 1.56-1.60 (m, 4 H, 2 CH2), 1.65-1.68 (m, 2 H, CH2), 3.34-3.37 (m, 4 H, 2 CH2), 4.51 (br s, 2 H, NH2), 5.84 (d, J = 2.0 Hz, 1 H, PyH), 6.59 (d, J = 2.0 Hz, 1 H, PyH), 7.38-7.42 (m, 3 H, ArH), 7.84-7.88 (m, 2 H, ArH); MS (FAB): m/z = 254 (M+ + 1); Anal. Calcd for C16H19N3: C, 75.85; H, 7.56; N, 16.59. Found: C, 75.38; H, 7.06; N, 16.37.