Semin Vasc Med 2005; 5(2): 163-171
DOI: 10.1055/s-2005-872401
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

Mechanisms of the Atherogenic Effects of Elevated Homocysteine in Experimental Models

Katina M. Wilson1 , Steven R. Lentz1 , 2
  • 1Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
  • 2Veterans Affairs Medical Center, Iowa City, Iowa
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Juli 2005 (online)

ABSTRACT

Hyperhomocysteinemia is a risk factor for cardiovascular disease and stroke. During the last decade, considerable progress in delineating the mechanisms that underlie the atherogenic effects of hyperhomocysteinemia has been achieved through the use of experimental animal models. Among the most informative animal models are those that use genetic and dietary approaches to produce hyperhomocysteinemia in mice. Recent findings demonstrate that hyperhomocysteinemia can accelerate the development of atherosclerosis in susceptible models such as the apolipoprotein E-deficient mouse. Hyperhomocysteinemia also is a potent inducer of endothelial dysfunction, particularly in small vessels such as cerebral arterioles. Mechanisms of endothelial dysfunction may include inhibition of endothelial nitric oxide synthase by its endogenous inhibitor, asymmetric dimethylarginine, and oxidative inactivation of nitric oxide mediated by upregulation of prooxidant enzymes and downregulation of antioxidant enzymes. There also is good evidence from animal models that hyperhomocysteinemia produces endoplasmic reticulum stress, which may contribute to atherosclerosis and endothelial dysfunction by activating signal transduction pathways leading to inflammation, oxidative stress, and apoptosis.

REFERENCES

  • 1 McCully K S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis.  Am J Pathol. 1969;  56 111-128
  • 2 Mudd S H, Finkelstein J D, Refsum H et al.. Homocysteine and its disulfide derivatives: a suggested consensus terminology.  Arterioscler Thromb Vasc Biol. 2000;  20 1704-1706
  • 3 Homocysteine Studies Collaboration . Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.  JAMA. 2002;  288 2015-2022
  • 4 Wald D S, Law M, Morris J K. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis.  BMJ. 2002;  325 1202
  • 5 Harker L A, Slichter S J, Scott C R, Ross R. Homocysteinemia. Vascular injury and arterial thrombosis.  N Engl J Med. 1974;  291 537-543
  • 6 Harker L A, Ross R, Slichter S J, Scott C R. Homocysteine-induced arteriosclerosis: the role of endothelial cell injury and platelet response in its genesis.  J Clin Invest. 1976;  58 731-741
  • 7 Harker L A, Harlan J M, Ross R. Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons.  Circ Res. 1983;  53 731-739
  • 8 Rolland P H, Friggi A, Barlatier A et al.. Hyperhomocysteinemia-induced vascular damage in the minipig: captopril-hydrochlorothiazide combination prevents elastic alterations.  Circulation. 1995;  91 1161-1174
  • 9 Matthias D, Becker C H, Riezler R, Kindling P H. Homocysteine induced arteriosclerosis-like alterations of the aorta in normotensive and hypertensive rats following application of high doses of methionine.  Atherosclerosis. 1996;  122 201-216
  • 10 Watanabe M, Osada J, Aratani Y et al.. Mice deficient in cystathionine β-synthase: animal models for mild and severe homocyst(e)inemia.  Proc Natl Acad Sci USA. 1995;  92 1585-1589
  • 11 Baumbach G L, Sigmund C D, Bottiglieri T, Lentz S R. Structure of cerebral arterioles in cystathionine beta-synthase-deficient mice.  Circ Res. 2002;  91 931-937
  • 12 Gilfix B M. Hyperhomocysteinemia: genetic determinants and selected mouse models.  Clin Invest Med. 2003;  26 121-132
  • 13 Chen Z, Karaplis A C, Ackerman S L et al.. Mice deficient in methylene tetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition.  Hum Mol Genet. 2001;  10 433-443
  • 14 Swanson D A, Liu M L, Baker P J et al.. Targeted disruption of the methionine synthase gene in mice.  Mol Cell Biol. 2001;  21 1058-1065
  • 15 Hofmann M A, Lalla E, Lu Y et al.. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model.  J Clin Invest. 2001;  107 675-683
  • 16 Zhou J, Møller J, Danielson C C et al.. Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in apoE-deficient mice.  Arterioscler Thromb Vasc Biol. 2001;  21 1470-1476
  • 17 Knowles J W, Maeda N. Genetic modifiers of atherosclerosis in mice.  Arterioscler Thromb Vasc Biol. 2000;  20 2336-2345
  • 18 Zhou J, Moller J, Ritskes-Hoitinga M, Larsen M L, Austin R C, Falk E. Effects of vitamin supplementation and hyperhomocysteinemia on atherosclerosis in apoE-deficient mice.  Atherosclerosis. 2003;  168 255-262
  • 19 Troen A M, Lutgens E, Smith D E, Rosenberg I H, Selhub J. The atherogenic effect of excess methionine intake.  Proc Natl Acad Sci USA. 2003;  100 15089-15094
  • 20 Zhou J, Werstuck G H, Lhotak S et al.. Association of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice.  Circulation. 2004;  110 207-213
  • 21 Wang H, Jiang X, Yang F et al.. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation.  Blood. 2003;  101 3901-3907
  • 22 Mudd S H, Skovby F, Levy H L et al.. The natural history of homocystinuria due to cystathionine β-synthase deficiency.  Am J Hum Genet. 1985;  37 1-31
  • 23 Werstuck G H, Lentz S R, Dayal S et al.. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and fatty acid biosynthetic pathways.  J Clin Invest. 2001;  107 1263-1273
  • 24 Namekata K, Enokido Y, Ishii I, Nagai Y, Harada T, Kimura H. Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia.  J Biol Chem. 2004;  279 52961-52969
  • 25 Zulli A, Hare D L, Buxton B F, Black M J. High dietary methionine plus cholesterol exacerbates atherosclerosis formation in the left main coronary artery of rabbits.  Atherosclerosis. 2004;  176 83-89
  • 26 Zhang R, Ma J, Xia M, Zhu H, Ling W. Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes.  J Nutr. 2004;  134 825-830
  • 27 Cai H, Harrison D G. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress.  Circ Res. 2000;  87 840-844
  • 28 Schachinger V, Britten M B, Zeiher A M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease.  Circulation. 2000;  101 1899-1906
  • 29 Lentz S R, Sobey C G, Piegors D J et al.. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia.  J Clin Invest. 1996;  98 24-29
  • 30 Ungvari Z, Pacher P, Rischak K, Szollar L, Koller A. Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyperhomocysteinemia.  Arterioscler Thromb Vasc Biol. 1999;  19 1899-1904
  • 31 Eberhardt R T, Forgione M A, Cap A et al.. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia.  J Clin Invest. 2000;  106 483-491
  • 32 Lentz S R, Erger R A, Dayal S et al.. Folate dependence of hyperhomocysteinemia and endothelial dysfunction in cystathionine β-synthase-deficient mice.  Am J Physiol heart Circ Physiol. 2000;  278 H970-H975
  • 33 Chambers J C, McGregor A, Jean-Marie J, Kooner J S. Acute hyperhomocysteinemia and endothelial dysfunction.  Lancet. 1998;  351 36-37
  • 34 Bellamy M F, Mcdowell I FW, Ramsey M W et al.. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults.  Circulation. 1998;  98 1848-1852
  • 35 Kanani P M, Sinkey C A, Browning R L, Allaman M, Knapp H R, Haynes W G. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans.  Circulation. 1999;  100 1161-1168
  • 36 Dayal S, Bottiglieri T, Arning E et al.. Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine β-synthase-deficient mice.  Circ Res. 2001;  88 1203-1209
  • 37 Dayal S, Arning E, Bottiglieri T et al.. Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice.  Stroke. 2004;  35 1957-1962
  • 38 Devlin A M, Arning E, Bottiglieri T, Faraci F M, Rozen R, Lentz S R. Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice.  Blood. 2004;  103 2624-2629
  • 39 Dayal S, Devlin A M, McCaw R B et al.. Cerebral vascular dysfunction in methionine synthase-deficient mice.  Circulation. , In press
  • 40 Weiss N, Heydrick S, Zhang Y Y, Bierl C, Cap A, Loscalzo J. Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice.  Arterioscler Thromb Vasc Biol. 2002;  22 34-41
  • 41 Virdis A, Iglarz M, Neves M F et al.. Effect of hyperhomocysteinemia and hypertension on endothelial function in methylenetetrahydrofolate reductase-deficient mice.  Arterioscler Thromb Vasc Biol. 2003;  23 1352-1357
  • 42 Faraci F M. Hyperhomocysteinemia: a million ways to lose control.  Arterioscler Thromb Vasc Biol. 2003;  23 371-373
  • 43 Stamler J S, Osborne J A, Jaraki O et al.. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen.  J Clin Invest. 1993;  91 308-318
  • 44 Upchurch G R, Welch G N, Fabian A J et al.. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase.  J Biol Chem. 1997;  272 17012-17017
  • 45 Welch G N, Loscalzo J. Homocysteine and atherothrombosis.  N Engl J Med. 1998;  338 1042-1050
  • 46 Chambers J C, McGregor A, Jean-Marie J, Obeid O A, Kooner J S. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia. An effect reversible with vitamin C therapy.  Circulation. 1999;  99 1156-1160
  • 47 Ungvari Z, Csiszar A, Edwards J G et al.. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase.  Arterioscler Thromb Vasc Biol. 2003;  23 418-424
  • 48 Weiss N, Zhang Y Y, Heydrick S, Bierl C, Loscalzo J. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction.  Proc Natl Acad Sci USA. 2001;  98 12503-12508
  • 49 Dayal S, Brown K L, Weydert C J et al.. Deficiency of glutathione peroxidase-1 sensitizes hyperhomocysteinemic mice to endothelial dysfunction.  Arterioscler Thromb Vasc Biol. 2002;  22 1996-2002
  • 50 Cai H, Griendling K K, Harrison D G. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases.  Trends Pharmacol Sci. 2003;  24 471-478
  • 51 Landmesser U, Dikalov S, Price S R et al.. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.  J Clin Invest. 2003;  111 1201-1209
  • 52 Kuzkaya N, Weissmann N, Harrison D G, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase.  J Biol Chem. 2003;  278 22546-22554
  • 53 Heydrick S J, Weiss N, Thomas S R et al.. L-homocysteine and L-homocystine stereospecifically induce endothelial nitric oxide synthase-dependent lipid peroxidation in endothelial cells.  Free Radic Biol Med. 2004;  36 632-640
  • 54 Sies H, Sharov V S, Klotz L O, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase.  J Biol Chem. 1997;  272 27812-27817
  • 55 Böger R H, Bode-Böger S M, Szuba A et al.. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction-its role in hypercholesterolemia.  Circulation. 1998;  98 1842-1847
  • 56 Böger R H. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor.  Cardiovasc Res. 2003;  59 824-833
  • 57 Vallance P. The asymmetrical dimethylarginine/dimethylarginine dimethylaminohydrolase pathway in the regulation of nitric oxide production.  Clin Sci. 2001;  100 159-160
  • 58 Böger R H, Bode-Böger S M, Sydow K, Heistad D D, Lentz S R. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia.  Arterioscler Thromb Vasc Biol. 2000;  20 1557-1564
  • 59 Böger R H, Lentz S R, Bode-Böger S M, Knapp H R, Haynes W G. Elevation of asymmetric dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inemia in humans.  Clin Sci. 2001;  100 161-167
  • 60 Stuhlinger M C, Oka R K, Graf E E et al.. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine.  Circulation. 2003;  108 933-938
  • 61 Stuhlinger M C, Tsao P S, Her J H, Kimoto M, Balint R F, Cooke J P. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine.  Circulation. 2001;  104 2569-2575
  • 62 Sengupta S, Wehbe C, Majors A K, Ketterer M E, DiBello P M, Jacobsen D W. Relative roles of albumin and ceruloplasmin in the formation of homocysteine, homocysteine-cysteine mixed disulfide and cystine in circulation.  J Biol Chem. 2001;  276 46896-46904
  • 63 Lentz S R, Sadler J E. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.  J Clin Invest. 1991;  88 1906-1914
  • 64 Lentz S R, Sadler J E. Homocysteine inhibits von Willebrand factor processing and secretion by preventing transport from the endoplasmic reticulum.  Blood. 1993;  81 683-689
  • 65 Austin R C, Lentz S R, Werstuck G H. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease.  Cell Death Differ. 2004;  11 S56-S64
  • 66 Kaufman R J. Orchestrating the unfolded protein response in health and disease.  J Clin Invest. 2002;  110 1389-1398
  • 67 Outinen P A, Sood S K, Pfeifer S I et al.. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells.  Blood. 1999;  94 959-967
  • 68 Zhang C, Cai Y, Adachi M T et al.. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response.  J Biol Chem. 2001;  276 35867-35874
  • 69 Pahl H L. Signal transduction from the endoplasmic reticulum to the cell nucleus.  Physiol Rev. 1999;  79 683-701

Steven R LentzM.D. Ph.D. 

Department of Internal Medicine, C32 GH, The University of Iowa

Iowa City, IA 52242