Z Orthop Ihre Grenzgeb 2005; 143(5): 556-560
DOI: 10.1055/s-2005-872473
Kniegelenk

© Georg Thieme Verlag Stuttgart · New York

Einpresskraft bei Press-fit Fixierung der vorderen Kreuzbandplastik - eine Grundlagenstudie

Axial Load in Case of Press-Fit Fixation of the ACL Graft - Basic ScienceH. O. Mayr1 , T. Beck1 , R. Hube1 , A. Jäger4 , R. von Eisenhart-Rothe5 , A. Bernstein2 , W. Plitz3 , W. Hein2
  • 1OCM - Klinik für Orthopädische Chirurgie München, München
  • 2Klinik und Poliklinik für Orthopädie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale
  • 3Labor für Biomechanik und experimentelle Orthopädie, Klinikum Großhadern, Ludwig-Maximilians-Universität München, München
  • 4Abteilung für Sportorthopädie, Knie- und Schulterchirurgie, BG-Unfallklinik, Frankfurt/Main
  • 5Forschungsgruppe Kinematik und Biomechanik, Orth. Universitätsklinik Stiftung Friedrichsheim, Frankfurt
Further Information

Publication History

Publication Date:
11 October 2005 (online)

Zusammenfassung

Studienziel: Bestimmung der erforderlichen Einpresskraft von glatten press-fit-Dübeln zur Befestigung der Patellasehnenplastik beim Ersatz des vorderen Kreuzbandes, um gleiche Befestigungseigenschaften zu erreichen wie bei der Interferenzschraubenfixierung. Methode: Studie an Rinderschienbeinköpfen mit 27 Patellasehnenplastiken, befestigt in tibialen Bohrlöchern, aufgeteilt in 3 Gruppen: Interferenzschraube, Passzylinderfixierung mit 150 N und mit 100 N. Vor der Befestigung Impaktierung des Transplantates in das Knochenbett. Testung bis zum Versagen in einer Zugmaschine mit einer Zuggeschwindigkeit von 50 mm/min. Bestimmung der Last bei Versagen und Steifigkeit. Ergebnisse: Bei 100 N und 150 N Einpresskraft des press-fit-Zylinders werden ähnliche Haltekräfte und Steifigkeiten erreicht wie bei der Interferenzschraubenfixierung. Maximalbelastung: 988,1 N ± 365,1 (Schraube) versus 1 210,4 N ± 292,4 (Dübel 150 N) und 1 109,8 N ± 505,4 (Dübel 100 N). Steifigkeit: 86,4 N/mm ± 20,5 (Schraube) versus 102,4 N/mm ± 15,2 (Dübel 150 N) und 77,1 N/mm ± 11,0 (Dübel 100 N). Es bestand kein signifikanter Unterschied. Schlussfolgerung: Bei der Einführung eines press-fit-Dübels (∅ 7 mm) mit 100 N axialer Kraft in ein präformiertes Knochenbett werden bei der Patellasehnendrittelplastik die gleichen Fixierungseigenschaften erreicht wie bei der Interferenzschraube.

Abstract

Aim: The aim of this study was the determination of the axial fixation load resting on smooth press-fit dowels needed for fixation of the patellar tendon graft (BTB) in order to reach the same fixation properties compared to the interference screw on anterior cruciate ligament (ACL) plasty. Method: Bovine test specimens with 27 BTB grafts fixed in tibial drill holes were used and divided in 3 groups: interference screw, and press-fit cylinder (Ø 7 mm) with 150 N and 100 N axial loads. Prior to fixation, impactation of the transplant into bone was carried out. Failure testing was done in a tensiometer at a cross-head speed of 50 mm/min. Determinations of peak load and stiffness were also made. Results: Similar peak loads and stiffness were reached on introducing a press-fit dowel (∅ 7 mm) with 100 N and 150 N axial load compared to interference screw fixation of the BTB graft. Peak load: 988.1 N ± 365.1 (screw) versus 1 210.4 N ± 292.4 (dowel 150 N) and 1 109.8 N ± 505.4 (dowel 100 N). Stiffness: 86.4 N/mm ± 20.5 (screw) versus 102.4 N/mm ± 15.2 (dowel 150 N) and 77.1 N/mm ± 11.0 (dowel 100 N). There was no significant difference. Conclusion: When introducing a press-fit dowel (∅ 7 mm) with 100 N axial load into a preformed bone bed, the same fixation properties are reached as in the case of an interference screw on BTB-ACL plasty.

Literatur

  • 1 Kurosaka M, Yoshiya S, Andrish J T. A biomechanical comparison of different surgical techniques of Graft Fixation in Anterior Cruciate Ligament Reconstruction.  Am J Sports Med. 1987;  15 225-229
  • 2 Gerich J G, Cassim A, Lattermann C, Lobenhoffer H P, Tscherne H. Resilience of tibial transplant fixation for replacement of the anterior cruciate ligament. Interference screws vs. staples.  Unfallchirurg. 1998;  101 204-208
  • 3 Kousa P, Jarvinen T L, Vihavainen M, Kannus P, Jarvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site.  Am J Sports Med. 2003;  31 182-188
  • 4 Fink C, Benedetto K P, Hackl W, Hoser C, Freund M C, Rieger M. Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: a prospective computed tomography-controlled study.  Arthroscopy. 2000;  16 491-498
  • 5 Scheffler S U, Sudkamp N P, Gockenjan A, Hoffmann R F, Weiler A. Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading.  Arthroscopy. 2002;  18 304-315
  • 6 Hoher J, Moller H D, Fu F H. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction?.  Knee Surg Sports Traumatol Arthrosc. 1998;  6 231-240
  • 7 Barrett G R, Noojin F K, Hartzog C W, Nash C R. Reconstruction of the anterior cruciate ligament in females: A comparison of hamstring versus patellar tendon autograft.  Arthroscopy. 2002;  18 46-54
  • 8 Nebelung W, Becker R, Urbach D, Ropke M, Roessner A. Histological findings of tendon-bone healing following anterior cruciate ligament reconstruction with hamstring grafts.  Arch Orthop Trauma Surg. 2003;  123 158-163
  • 9 Boszotta H. Arthroscopic reconstruction of anterior cruciate ligament using BTB patellar ligament in the press-fit technique.  Surg Technol Int. 2003;  11 249-253
  • 10 Musahl V, Abramowitch S D, Gabriel M T, Debski R E, Hertel P, Fu F H, Woo S L. Tensile properties of an anterior cruciate ligament graft after bone-patellar tendon-bone press-fit fixation.  Knee Surg Sports Traumatol Arthrosc. 2003;  11 68-74
  • 11 Weiler A, Hoffmann R F, Bail H J, Rehm O, Sudkamp N P. Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep.  Arthroscopy. 2002;  18 124-135
  • 12 Noyes F R, DeLucas J L, Torvik P J. Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates.  J Bone Joint Surg [Am]. 1974;  56 236-253
  • 13 Hulstyn M, Fadale P D, Abate J, Walsh W R. Biomechanical Evaluation of Interference Screw Fixation in a Bovine Patellar Bone-Tendon-Bone Autograft Complex for Anterior Cruciate Ligament Reconstruction.  Arthroscopy. 1993;  9 417-424
  • 14 Kohn D, Rose C. Primary Stability of Interference Screw Fixation. Influence of Screw Diameter and Insertion Torque.  Am J Sports Med. 1994;  22 334-338
  • 15 Noyes F R, Butler D L, Grood E S, Zernicke R F, Hefzy M S. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.  J Bone Joint Surg [Am]. 1984;  66 344-352

Dr. med. H. O. Mayr

OCM - Klinik für Orthopädische Chirurgie München

Steiner Str. 6

81369 München

Phone: +49/89/2 06 08 21 03

Fax: +49/89/2 06 08 23 33

Email: hermann.mayr@ocm-muenchen.de