Der Nuklearmediziner 2005; 28(4): 206-213
DOI: 10.1055/s-2005-872537
Editorial

© Georg Thieme Verlag Stuttgart · New York

Radiopharmakaforschung: Trends und neue Konzepte

Radiopharmaceutical Research: Trends and Novel ConceptsF. Wüst1
  • 1Institut für Bioanorganische und Radiopharmazeutische Chemie, Forschungszentrum Rossendorf e. V.
Further Information

Publication History

Publication Date:
02 January 2006 (online)

Zusammenfassung

Die Leistungsfähigkeit der Nuklearmedizin in der Diagnostik, Therapie und medizinischen Forschung hängt entscheidend vom Fortschritt bei der Entwicklung neuer geeigneter Radiopharmaka ab. Die Auswahl, die Herstellung und die präklinische Evaluation dieser neuen Radiopharmaka ist Gegenstand der radiopharmazeutischen Chemie. Vor dem Hintergrund der rasanten Entwicklungen auf den Gebieten der Biowissenschaften im Post-Genom-Zeitalter und der technologischen Fortschritte bei der Instrumentierung der bildgebenden nuklearmedizinischen Verfahren SPECT und PET hat sich die Radiopharmakaforschung in den letzten Jahren zu einer komplexen chemischen Wissenschaft entwickelt. Die Schwerpunkte der aktuellen Radiopharmakaforschung umfassen dabei besonders neue koordinationschemische Entwicklungen auf dem Gebiet der [99mTc]Technetium-Radiopharmaka, die Herstellung von so genannten Nicht-Standard-Radionukliden für die PET sowie die Synthese von 11C- und 18F-markierten Radiopharmaka mit hoher spezifischer Radioaktivität. Weitere wichtige Entwicklungen zeichnen sich durch die zunehmende Ausrichtung der Radiopharmakaforschung auf die Entwicklung von Radiotherapeutika und die Einbeziehung der PET in die Arzneimittelentwicklung und -evaluation ab.

Abstract

The efficiency of nuclear medicine in diagnosis, therapy and medicinal research strongly depends on the progress to develop novel suitable radiopharmaceuticals. The selection, preparation, and preclinical evaluation of new radiopharmaceuticals is addressed by the field of radiopharmaceutical chemistry. The rapid developments in the field of biotechnology in the post-genome era combined with the recent advances in the instrumentation of SPECT and PET have directed radiopharmaceutical research into a complex chemical science. Current radiopharmaceutical research comprises novel developments of coordination chemistry with [99mTc]technetium pharmaceuticals, the development of non-standard PET radionuclides and the synthesis of 11C- and 18F-labelled radiopharmaceuticals at high specific radioactivity. Further developments deal with an increasing alignment to radiotherapeutics and the implementation of PET into the process of drug development and evaluation.

Literatur

  • 1 Banerjee S R, Maresca K P, Francesconi L, Valliant J, Babich J W, Zubieta J. New directions in the coordination chemistry of 99mTc: a reflection on technetium core structures and a strategy for new chelate design.  Nucl Med Biol. 2005;  32 1-20
  • 2 Bolzati C, Benini E, Cazzola E, Jung C, Tisato F, Refosco F, Pietzsch H J, Spies H, Uccelli L, Duatti A. Synthesis, characterization, and biological evaluation of neutral nitrido technetium(V) mixed ligand complexes containing dithiolates and aminodiphosphines. A novel system for linking technetium to biomolecules.  Bioconjug Chem. 2004;  15 628-637
  • 3 Boschi A, Bolzati C, Uccelli L, Duatti A, Benini E, Refosco F, Tisato F, Piffanelli A. A class of asymmetrical nitrido 99mTc heterocomplexes as heart imaging agents with improved biological properties.  Nucl Med Commun. 2002;  23 689-693
  • 4 Belhadj-Tahar H, Ouhayoun E, Cros G, Darbieu M H, Tafani J A, Fabre J, Esquerre J P, Coulais Y. Synthesis and biodistribution of new oxo and nitrido 99mTc complexes with asymmetrical potentially dianionic or trianionic tetradentate SNNO ligands derived from methyl-2-aminocyclopentene-1-dithiocarboxylic acid.  Nucl Med Biol. 1998;  25 65-69
  • 5 Stalteri M A, Parrott S J, Griffiths V A, Dilworth J R, Mather S J. Uptake of 99Tcm-nitrido dithiocarbamate complexes by tumour cells.  Nucl Med Commun. 1997;  18 870-877
  • 6 Purohit A, Liu S, Ellars C E, Casebier D, Haber S B, Edwards D S. Pyridine-containing 6-hydrazinonicotinamide derivatives as potential bifunctional chelators for 99mTc-labeling of small biomolecules.  Bioconjug Chem. 2004;  15 728-737
  • 7 Su Z F, He J, Rusckowski M, Hnatowich D J. In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands.  Nucl Med Biol. 2003;  30 141-149
  • 8 Ono M, Arano Y, Mukai T, Saga T, Fujioka Y, Ogawa K, Kawashima H, Konishi J, Saji H. Control of radioactivity pharmacokinetics of 99mTc-HYNIC-labeled polypeptides derivatized with ternary ligand complexes.  Bioconjug Chem. 2002;  13 491-501
  • 9 Guggenberg E, Behe M, Behr T M, Saurer M, Seppi T, Decristoforo C. 99mTc-labeling and in vitro and in vivo evaluation of HYNIC- and (Nα-His)acetic acid-modified [D-Glu1]-minigastrin.  Bioconjug Chem. 2004;  15 864-871
  • 10 Schibli R, Schubiger P A. Current use and future potential of organometallic radiopharmaceuticals.  Eur J Nucl Med Mol Imaging. 2002;  29 1529-1542
  • 11 La Bella R, Garcia-Garayoa E, Bahler M, Blauenstein P, Schibli R, Conrath P, Tourwe D, Schubiger P A. A 99mTc(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent.  Bioconjug Chem. 2002;  13 599-604
  • 12 Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger A P. Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. .  J Am Chem Soc.. 2001;  123 3135-3136
  • 13 Schibli R, Dumas C, Petrig J, Spadola L, Scapozza L, Garcia-Garayoa E, Schubiger P A. Synthesis and in vitro characterization of organometallic rhenium and technetium glucose complexes against Glut 1 and hexokinase.  Bioconjug Chem. 2005;  16 105-112
  • 14 Fritzberg A R, Kasina S, Eshima D, Johnson D L. Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran replacement.  J Nucl Med. 1986;  27 11-116
  • 15 Okarvi S M, al-Jammaz I. Synthesis, radiolabelling and biological characteristics of a bombesin peptide analog as a tumor imaging agent.  Anticancer Res. 2003;  23 2745-2750
  • 16 McQuade P, Rowland D J, Lewis J S, Welch M J. Positron-emitting isotopes produced on biomedical cyclotrons.  Curr Med Chem. 2005;  12 807-818
  • 17 Pagani M, Stone-Elander S, Larsson S A. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications.  Eur J Nucl Med. 1997;  24 1301-1327
  • 18 Nickles R J. The production of a broader palette of PET tracers.  J Label Compd Radiopharm. 2003;  46 1-27
  • 19 Anderson C J, Welch M J. Radiometal-labeled agents (non-technetium) for diagnostic imaging.  Chem Rev. 1999;  99 2219-2234
  • 20 Bergman J, Solin O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules.  Nucl Med Biol. 1997;  24 677-683
  • 21 Eskola O, Gronroos T, Bergman J, Haaparanta M, Marjamaki P, Lehikoinen P, Forsback S, Langer O, Hinnen F, Dolle F, Halldin C, Solin O. A novel electrophilic synthesis and evaluation of medium specific radioactivity (1R,2S)-4-[18F]fluorometaraminol, a tracer for the assessment of cardiac sympathetic nerve integrity with PET.  Nucl Med Biol. 2004;  31 103-110
  • 22 Crouzel C, Langström B, Pike V W, Coenen H H. Recommendations for a practical production of [11C]methyl iodide.  Appl Radiat Isot. 1987;  38 601-603
  • 23 Matarrese M, Soloviev D, Todde S, Neutro F, Petta P, Carpinelli A, Brussermann M, Galli Kienle M, Fazio F. Preparation of [11C] radioligands with high specific radioactivity on a commercial PET tracer synthesizer.  Nucl Med Biol. 2003;  30 79-83
  • 24 Larsen P, Ulin J, Dahlstrom K, Jemsen M. Synthesis of [11C]iodomethane by iodination of [11C]methane.  Appl Radiat Isot. 1997;  48 153-157
  • 25 Zhang M R, Suzuki K. Sources of carbon which decrease the specific activity of [11C]CH3I synthesized by the single pass I2 method.  Appl Radiat Isot. 2005;  62 447-450
  • 26 Noguchi J, Suzuki K. Automated synthesis of the ultra high specific activity of [11C]Ro15-4513 and its application in an extremely low concentration region to an ARG study.  Nucl Med Biol. 2003;  30 335-343
  • 27 Link J M, Krohn K A, Clark J C. Production of [11C]CH3I by single pass reaction of [11C]CH4 with I2.  Nucl Med Biol. 1997;  24 93-97
  • 28 Buckley K R, Jivan S, Ruth T J. Improved yields for the in situ production of [11C]CH4 using a niobium target chamber.  Nucl Med Biol. 2004;  31 825-827
  • 29 Imam S K. Advancements in cancer therapy with alpha-emitters: a review.  Int J Radiat Oncol Biol Phys. 2001;  51 271-278
  • 30 Kennel S J, Mirzadeh S, Eckelman W C, Waldmann T A, Garmestani K, Yordanov A T, Stabin M G, Brechbiel M W. Vascular-targeted radioimmunotherapy with the alpha-particle emitter 211At.  Radiat Res. 2002;  157 633-641
  • 31 Kennel S J, Brechbiel M W, Milenic D E, Schlom J, Mirzadeh S. Actinium-225 conjugates of MAb CC49 and humanized delta CH2CC49.  Cancer Biother Radiopharm. 2002;  17 219-231
  • 32 McDevitt M R, Ma D, Lai L T, Simon J, Borchardt P, Frank R K, Wu K, Pellegrini V, Curcio M J, Miederer M, Bander N H, Scheinberg D A. Tumor therapy with targeted atomic nanogenerators.  Science. 2001;  294 1537-1540
  • 33 Miederer M, McDevitt M R, Sgouros G, Kramer K, Cheung N K, Scheinberg D A. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates.  J Nucl Med. 2004;  45 129-137
  • 34 Volkert W A, Hoffman T J. Therapeutic radiopharmaceuticals.  Chem Rev. 1999;  99 2269-2292
  • 35 Ercan M T, Caglar M. Therapeutic radiopharmaceuticals.  Curr Pharm Des. 2000;  6 1085-1121
  • 36 Reichert D E, Lewis J S, Anderson C J. Metal complexes as diagnostic tools.  Coord Chem Rev. 1999;  184 3-66
  • 37 Giblin M F, Veerendra B, Smith C J. Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer.  In Vivo. 2005;  19 9-29
  • 38 Illidge T M, Brock S. Radioimmunotherapy of cancer: using monoclonal antibodies to target radiotherapy.  Curr Pharm Des. 2000;  6 1399-1418
  • 39 Heppeler A, Froidevaux S, Eberle A N, Maecke H R. Receptor targeting for tumor localisation and therapy with radiopeptides.  Curr Med Chem. 2000;  7 971-994
  • 40 Goldenberg D M. Targeted therapy of cancer with radiolabeled antibodies.  J Nucl Med. 2002;  43 693-713
  • 41 Price P. PET as a potential tool for imaging molecular mechanisms of oncology in man.  Trends Mol Med. 2001;  7 442-446
  • 42 Maclean D, Northrop J P, Padgett H C, Walsh J C. Drugs and probes: the symbiotic relationship between pharmaceutical discovery and imaging science.  Mol Imaging Biol. 2003;  5 304-311
  • 43 Klimas M T. Positron emission tomography and drug discovery: contributions to the understanding of pharmacokinetics, mechanism of action and disease state characterization.  Mol Imaging Biol. 2002;  4 311-337
  • 44 Fowler J S, Volkow N D, Wang G J, Ding Y S, Dewey S L. PET and drug research and development.  J Nucl Med. 1999;  40 1154-1163
  • 45 Paans A M, Vaalburg W. Positron emission tomography in drug development and drug evaluation.  Curr Pharm Des. 2000;  6 1583-1591

Dr. F. Wüst

Institut für Bioanorganische und Radiopharmazeutische Chemie

Postfach 51 01 19

01314 Dresden

Phone: 03 51/2 60 27 60

Fax: 03 51/2 60 29 15

Email: f.wuest@fz-rossendorf.de

    >