Subscribe to RSS
DOI: 10.1055/s-2005-872671
Enantioselective Synthesis of Aliphatic Cyanohydrin Acetates
Publication History
Publication Date:
07 September 2005 (online)
Abstract
When the standard conditions for the enantioselective synthesis of cyanohydrin acetates via dynamic kinetic resolution are applied to aliphatic substrates, only a kinetic resolution is observed. However, by exchanging the base (Amberlite) against NaCN, quantitative conversions and good enantioselectivities are obtained.
Key words
cyanohydrins - asymmetric synthesis - Candida antarctica lipase B - enzyme catalysis - dynamic kinetic resolution
-
1a
Gregory RJH. Chem. Rev. 1999, 99: 3649 -
1b
North M. Tetrahedron: Asymmetry 2003, 14: 147 -
1c
Brunel JM.Holmes IP. Angew. Chem. Int. Ed. 2004, 43: 2752 - 2
Hanefeld U. Org. Biomol. Chem. 2003, 1: 2405 -
3a
Kanerva LT.Rahiala K.Sundholm O. Biocatalysis 1994, 10: 169 -
3b
Paizs C.Toºa M.Majdik C.Tähtinen P.Irimie FD.Kanerva LT. Tetrahedron: Asymmetry 2003, 14: 619 -
3c
Paizs C.Tähtinen P.Lundell K.Poppe L.Irimie FD.Kanerva LT. Tetrahedron: Asymmetry 2003, 14: 1895 -
3d
Paizs C.Tähtinen P.Toºa M.Majdik C.Irimie FD.Kanerva LT. Tetrahedron 2004, 60: 10533 -
4a
Effenberger F.Förster S.Wajant H. Curr. Opin. Biotechnol. 2000, 11: 532 -
4b
Griengl H.Schwab H.Fechter M. Trends Biotechnol. 2000, 18: 252 -
4c
Sukumaran J.Hanefeld U. Chem. Soc. Rev. 2005, 34: 530 -
5a
Inagaki M.Hiratake J.Nishioka T.Oda J. J. Am. Chem. Soc. 1991, 113: 9360 -
5b
Inagaki M.Hiratake J.Nishioka T.Oda J. J. Org. Chem. 1992, 57: 5643 -
5c
Inagaki M.Hatanaka A.Mimura M.Hiratake J.Nishioka T.Oda J. Bull. Chem. Soc. Jpn. 1992, 65: 111 -
6a
Veum L.Hanefeld U. Tetrahedron: Asymmetry 2004, 15: 3707 -
6b
Veum L.Kanerva LT.Halling PJ.Maschmeyer T.Hanefeld U. Adv. Synth. Catal. 2005, 347: 1015 -
7a
Ryu DH.Corey EJ. J. Am. Chem. Soc. 2004, 126: 8106 -
7b
Chang CW.Yang CT.Hwang CD.Uang BJ. Chem. Commun. 2002, 54 -
7c
Belokon YN.Carta P.North M. Lett. Org. Chem. 2004, 1: 81 -
9a
Li Y.-X.Straathof AJJ.Hanefeld U. Tetrahedron: Asymmetry 2002, 13: 739 -
9b
Veum L.Kuster M.Telalovic S.Hanefeld U.Maschmeyer T. Eur. J. Org. Chem. 2002, 1516 -
9c
Hanefeld U.Li Y.Sheldon RA.Maschmeyer T. Synlett 2000, 1775
References
For the procedure see the analytical scale experiment in ref. 6b.
10All conversion and enantiomeric purity was determined by chiral GC using a β-cyclodextrin column (CP-Chirasil-Dex CB 25m × 0.25 mm) using He with a linear gas velocity of 75 cm/s.
11Racemic 3c: 1H NMR (300 MHz, CDCl3): δ = 0.89 (t, J = 7.0 Hz, 3 H, CH
3-CH2), 1.25-1.40 (m, 8 H, CH3-CH
2-CH
2-CH
2-CH
2), 1.50 (m, 2 H, CH
2-CH2-CH), 1.90 (m, 2 H, CH
2-CH), 2.13 (s, 3 H, CH
3-C=O), 5.31 (t, J = 6.8 Hz, 1 H, CH-CN). 13C NMR (75 MHz, CDCl3): δ = 14.0 (C8), 20.4 (CH3-C=O), 22.6 (C7), 24.6 (C6), 28.8 (C5), 29.0 (C4), 31.6 (C3), 32.3 (C2), 61.2 (C-O), 117.0 (CN), 169.2 (C=O).
Racemic 3d: 1H NMR (300 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H, CH
3-CH2), 1.20-1.40 (m, 10 H, CH3-CH
2-CH
2-CH
2-CH
2-CH
2), 1.50 (m, 2 H, CH
2-CH2-CH), 1.90 (m, 2 H, CH
2-CH), 2.12 (s, 3 H, CH
3-CO), 5.30 (t, J = 6.8 Hz, 1 H, CH-CN). 13C NMR (75 MHz, CDCl3): δ = 14.1 (C10), 20.4 (CH3-C=O), 22.7 (C9), 24.6 (C8), 28.9 (C7), 29.3 (C6), 29.3 (C5), 29.4 (C4), 31.9 (C3), 32.3 (C2), 61.2 (C-O), 117.0 (CN), 169.2 (C=O).
For the procedure, see the preparative scale experiment in ref. 6b.
13Compound (S)-3a: [α]D 25 -47,7 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 1.10-1.40 (m, 5 H, ring CH and CH2), 1.70-1.90 (m, 6 H, ring CH2), 2.14 (s, 3 H, CH 3), 5.17 (d, J = 6.0 Hz, 1 H, CH-CN). 13C NMR (75 MHz, CDCl3): δ = 20.3 (CH3), 25.3, 25.4, 25.8, 28.0, 28.1 and 40.5 (ring C), 65.6 (CH-O), 116.2 (CN), 169.3 (C=O).
14Compound (S)-3b: [α]D 25 -36.9 (c 1, MeOH). 1H NMR (400 MHz, CDCl3): δ = 0.90 (m, 3 H, CH 3-CH2), 1.33 (m, 4 H, CH3-CH 2-CH 2), 1.50 (m, 2 H, CH 2-CH2-CH), 1.90 (m, 2 H, CH 2-CH), 2.14 (s, 3 H, CH 3-CO), 5.31 (t, J = 6.8 Hz, 1 H, CH-CN). 13C NMR (100 MHz, CDCl3): δ = 13.9 (C6), 20.4 (CH3-C=O), 22.3 (C5), 24.2 (C4), 30.9 (C3), 32.3 (C2), 61.2 (CH), 117.0 (CN), 169.2 (C=O).