Int J Sports Med 2006; 27(8): 653-659
DOI: 10.1055/s-2005-872828
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

Effect of Exercise, Body Composition, and Nutritional Intake on Bone Parameters in Male Elite Rock Climbers

W. Kemmler1 , I. Roloff1 , H. Baumann2 , V. Schöffl3 , J. Weineck2 , W. Kalender1 , K. Engelke1
  • 1Institute of Medical Physics, University of Erlangen, Erlangen, Germany
  • 2Institute of Sport Sciences, University of Erlangen, Erlangen, Germany
  • 3Surgery Clinics, Klinikum Bamberg, Bamberg, Germany
Weitere Informationen

Publikationsverlauf

Accepted after revision: July 15, 2005

Publikationsdatum:
01. Februar 2006 (online)

Abstract

A low body mass index is considered essential for high performance in rock climbing; however its effect on bone may be negative. In this study we compared the BMD of competitive male rock climbers (n = 20) and age- and BMI-matched non-training controls (n = 11). Subjects with any medication or illness affecting bone metabolism or a family history of osteoporosis were not included in the analysis. Total body BMD was measured by dual-energy X‐ray absorptiometry. Quantitative computed tomographic scans were made from the femoral neck and the lumbar spine. Dietary intake was assessed by a 5-day protocol. BMD of the TB-scan was significantly higher in the climbers group for all sub-regions except the skull (p = 0.191) and the lower extremities (p = 0.079). Trabecular and cortical BMD of the LS were significantly higher (p = 0.036 and p = 0.004) in the climbers. The same was true for total (p = 0.005) and cortical (p = 0.002) BMD of the FN. Trabecular BMD (p = 0.054), CSA (p < 0.343) and cortical thickness (p = 0.065) of the FN was non-significantly higher for the climbers. Our study indicates that the effect of climbing on bone parameters per se is not detrimental in elite male athletes. Contrarily climbers demonstrated significantly higher BMD values at all loaded regions without “steal effects” at skeletal sites with low mechanical impact. Although we determined a moderately negative effect of low BMI on BMD we could not decide whether a low BMI value should be used as an exclusion criterion in high level climbing competitions as practized by the Austrian Sportclimbing Organization.

References

  • 1 Aloia J F, Vaswani A, Ma R, Flaster E. To what extent is bone mass determined by fat-free or fat mass?.  Am J Clin Nutr. 1995;  61 1110-1114
  • 2 Anonymus. Wettklettern - ein Informationsblatt für Athleten und Betreuer. Scherer R Innsbruck; VAVÖ Bundes-Fachverband für Wettklettern, Fachgruppe Spitzensport 2005: 1-40
  • 3 Burr D B, Milgrom C, Fyhrie D, Forwood M, Nyska M, Finestone A, Hoshaw S, Saiag E, Simkin A. In vivo measurement of human tibial strains during vigorous activity.  Bone. 1996;  18 405-410
  • 4 Cetin A, Gokce-Kutsal Y, Celiker R. Predictors of bone mineral density in healthy males.  Rheumatol Int. 2001;  21 85-88
  • 5 Chel V G, Ooms M E, Popp-Snijders C, Pavel S, Schothorst A A, Meulemans C C, Lips P. Ultraviolet irradiation corrects vitamin D deficiency and suppresses secondary hyperparathyroidism in the elderly.  J Bone Miner Res. 1998;  13 1238-1242
  • 6 Cullen D M, Smith R T, Akhter M P. Bone-loading response varies with strain magnitude and cycle number.  J Appl Physiol. 2001;  91 1971-1976
  • 7 DGE (Deutsche Gesellschaft für Ernährung) .DACH-Referenzwerte der Nährstoffzufuhr: http://www.dge.de/Pages/navigation/dge_datenbank/index.htm . 2001
  • 8 Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, Nagata Y N. Relative contribution of lean and fat mass component to bone mineral density in males.  J Bone Miner Metab. 2003;  21 17-21
  • 9 Frost H M. Bone's mechanostat. A 2003 update.  Anat Rec. 2003;  275 (A) 1081-1101
  • 10 Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players.  Bone. 2000;  27 351-357
  • 11 Judex S, Zernicke R F. Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone?.  Bone. 2000;  26 153-159
  • 12 Judex S, Zernicke R F. High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation.  J Appl Physiol. 2000;  88 2183-2191
  • 13 Kalender W A, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J. Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography.  Eur J Rad. 1989;  9 75-80
  • 14 Kalender W A, Klotz E, Süss C. Vertebral bone mineral analysis: an integrated approach with CT.  Radiology. 1987;  164 419-423
  • 15 Kang Y. 3D Quantitative Computed Tomography (QCT) of the proximal femur (Doctoral Thesis). Erlangen; Friedrich-Alexander-Universität Erlangen-Nürnberg 2003
  • 16 Kemmler W, Engelke K, Lauber D, Weineck J, Hensen J, Kalender W A. The Erlangen Fitness Osteoporosis Prevention Study (EFOPS) - a controlled exercise trial in early postmenopausal women with low bone density: First year results.  Arch Phys Med Rehabil. 2003;  84 673-683
  • 17 Kemmler W, Weineck J, Kalender W A, Engelke K. Habitual physical activity, muscle strength, and V·O2max are not highly related with bone parameters in early postmenopausal women with low bone density.  J Muskuloskel Neuron Interact. 2004;  4 325-334
  • 18 Kemmler W, Weineck J, Hensen J, Lauber D, Kalender W A, Engelke K. Empfehlungen für ein körperliches Training zur Verbesserung der Knochenfestigkeit: Schlussfolgerungen aus Tiermodellen und Untersuchungen an Leistungssportlern.  Dtsch Z Sportmed. 2003;  54 306-316
  • 19 LaMothe J M, Zernicke R F. Rest insertion combined with high-frequency loading enhances osteogenesis.  J Appl Physiol. 2004;  96 1788-1793
  • 20 Lanyon L E. Biomechanical factors in adaption of bone structure to function. Uhthoff HK Current Concepts of Bone Fragility. Berlin; Springer 1986
  • 21 Lanyon L E. Functional strain as a determinant for bone remodeling.  Calcif Tiss Int. 1984;  36 56-61
  • 22 Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations.  J Hand Surg [Am]. 1984;  9 222-226
  • 23 Morel J, Combe B, Francisco J, Bernard J. Bone mineral density of 704 amateur sportsmen involved in different physical activities.  Osteoporos Int. 2001;  12 152-157
  • 24 Nevill A M, Holder R L, Stewart A D. Modeling elite male athletes' peripheral bone mass, assessed using regional dual x-ray absorptiometry.  Bone. 2003;  32 62-68
  • 25 NIH (National Institute of Health) . Consensus development panel on optimum calcium intake.  JAMA. 1994;  272 1942-1948
  • 26 Orwoll E S, Bauer D C, Vogt T M. Axial bone mass in older women.  Ann Intern Med. 1996;  124 187-196
  • 27 Pettersson U, Nordström P, Lorentzon R. A comparison of bone mineral density and muscle strength in young male adults with different exercise level.  Calcif Tissue Int. 1999;  64 490-498
  • 28 Rankinen T, Lyytikainen S, Vanninen E, Penttila I, Rauramaa R, Uusitupa M. Nutritional status of the Finnish elite ski jumpers.  Med Sci Sports Exerc. 1998;  30 1592-1597
  • 29 Robling A G, Burr D B, Turner C H. Recovery periods restore mechanosensitivity to dynamically loaded bone.  J Exp Biol. 2001;  204 3389-3399
  • 30 Robling A G, Hinant F M, Burr D B, Turner C H. Shorter, more frequent mechanical loading sessions enhance bone mass.  Med Sci Sports Exerc. 2002;  34 196-202
  • 31 Rubin C T, Lanyon L E. Regulation of bone formation by applied dynamic loads.  J Bone Joint Surg. 1984;  66 A 397-402
  • 32 Saxon L K, Robling A G, Alam I M, Turner C H. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off.  Bone. 2005;  36 454-464
  • 33 Sheel A W. Physiology of sport rock climbing.  Br J Sports Med. 2004;  38 355-359
  • 34 Srinivasan S, Weimer D A, Agans S C, Bain S D, Gross T S. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle.  J Bone Miner Res. 2002;  17 1613-1620
  • 35 Turner C H, Forwood M R, Otter M W. Mechanotransduction in bone: do bone cells act as sensors of fluid flow?.  Faseb J. 1994;  8 875-878
  • 36 Turner C H, Forwood M R, Rho J Y, Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation.  J Bone Miner Res. 1994;  9 87-97
  • 37 Turner C H, Robling A G. Exercise as an anabolic stimulus for bone.  Curr Pharm Des. 2004;  10 2629-2641
  • 38 Watts P B. Physiology of difficult rock climbing.  Eur J Appl Physiol. 2004;  91 361-372
  • 39 Zapf J. Aspekte der Ernährung beim Sportklettern. Schöffl V, Hochholzer T Sportklettern. Aktuelle sportmedizinische Aspekte. Ebenhausen; Lochnerverlag 2004: 182-203

PD Dr. Wolfgang Kemmler

Institute of Medical Physics
University of Erlangen

Henkestraße 91

91054 Erlangen

Germany

Telefon: +4991318523999

Fax: +49 9 13 18 52 28 24

eMail: wolfgang.kemmler@imp.uni-erlangen.de