Abstract
Ozone and light effects on endophytic colonization by Apiognomonia errabunda of adult beech trees (Fagus sylvatica) and their putative mediation by internal defence compounds were studied at the Kranzberg Forest free-air ozone fumigation site. A. errabunda colonization was quantified by “real-time PCR” (QPCR). A. errabunda -specific primers allowed detection without interference by DNA from European beech and several species of common genera of plant pathogenic fungi, such as Mycosphaerella, Alternaria, Botrytis, and Fusarium . Colonization levels of sun and shade leaves of European beech trees exposed either to ambient or twice ambient ozone regimes were determined. Colonization was significantly higher in shade compared to sun leaves. Ozone exhibited a marginally inhibitory effect on fungal colonization only in young leaves in 2002. The hot and dry summer of 2003 reduced fungal colonization dramatically, being more pronounced than ozone treatment or sun exposure. Levels of soluble and cell wall-bound phenolic compounds were approximately twice as high in sun than in shade leaves. Acylated flavonol 3-O -glycosides with putatively high UV‐B shielding effect were very low in shade canopy leaves. Ozone had only a minor influence on secondary metabolites in sun leaves. It slightly increased kaempferol 3-O -glucoside levels exclusively in shade leaves. The frequently prominent hydroxycinnamic acid derivative, chlorogenic acid, was tested for its growth inhibiting activity against Apiognomonia and showed an IC50 of approximately 8 mM. Appearance of Apiognomonia -related necroses strongly correlated with the occurrence of the stress metabolite, 3,3′,4,4′-tetramethoxybiphenyl. Infection success of Apiognomonia was highly dependent on light exposure, presumably affected by the endogenous levels of constitutive phenolic compounds. Ozone exerted only minor modulating effects, whereas climatic factors, such as pronounced heat periods and drought, were dramatically overriding.
Key words
European beech (Fagus sylvatica)
-
Apiognomonia errabunda
- endophyte - “real-time PCR” - plant phenolics - sun and shade leaves - light - ozone - climate - precipitation.
References
1
Bahnweg G., Schulze S., Möller E. M., Rosenbrock H., Langebartels C., Sandermann H..
DNA isolation from recalcitrant materials such as tree roots, bark, and forest soil for the detection of fungal pathogens by PCR.
Analytical Biochemistry.
(1998);
262
79-82
2
Bahnweg G., Schubert R., Kehr R. D., Müller-Starck G., Heller W., Langebartels C., Sandermann H..
Controlled inoculation of Norway spruce (Picea abies) with Sirococcus conigenus : PCR-based quantification of the pathogen in host tissue and infection-related increase of phenolic metabolites.
Trees.
(2000);
14
435-441
3
Böhm J., Hahn A., Schubert R., Bahnweg G., Adler N., Nechwatal J., Oehlmann R., Oßwald W..
Real-time quantitative PCR: DNA determination in isolated spores of the mycorrhizal fungus Glomus mossae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants.
Journal of Phytopathology.
(1999);
147
409-416
4 Butin H.. Tree Diseases and Disorders. Oxford; Oxford University Press (1995)
5
Butin H..
Effect of endophytic fungi from oak (Quercus robur L.) on mortality of leaf-inhabiting gall insects.
European Journal of Forest Pathology.
(1992);
22
237-246
6
Carrol G..
Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont.
Ecology.
(1988);
69
2-9
7
Danti R., Sieber T. N., Sanguineti G..
Endophytic mycobiota in bark of European beech (Fagus sylvatica) in the Apennines.
Mycological Research.
(2002);
106
1343-1348
8
Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F..
Colorimetric method for determination of sugars and related substances.
Analytical Chemistry.
(1956);
28
350-356
9
Haemmerli U. A., Brändle U. E., Petrini O., McDermott J. M..
Differentiation of isolates of Discula umbrinella (teleomorph: Apiognomonia errabunda ) from beech, chestnut, and oak using randomly amplified polymorphic DNA markers.
Molecular Plant-Microbe Interactions.
(1992);
5
479-483
10 Kowalski T., Kehr R. D.. Fungal endophytes of living branch bases in several European tree species. Redlin, S. C. and Carris, L. M., eds. Endophytic Fungi in Grasses and Woody Plants - Systematics, Ecology and Evolution , St. Paul,. Minnesota; APS Press (1996): 67-86
11 Langebartels C., Heller W., Ernst D., Lippert M., Lütz C., Sandermann H.. Ozone responses of trees: results from controlled chamber exposures in the GSF phytotron. Sandermann, H., Wellburn, A. R., and Heath, R. L., eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments, Ecological Studies No. 127. Berlin; Springer Verlag (1997): 163-200
12
Langebartels C., Heller W., Führer G., Lippert M., Simons S., Sandermann H..
“Memory effects” in the action of ozone on conifers.
Ecotoxicology and Environmental Safety.
(1998);
41
62-72
13
Lee S. B., Taylor J. W..
Phylogeny of five fungus-like protoctisan Phytophthora species, inferred from the internal transcribed spacer of ribosomal DNA.
Molecular Biology and Evolution.
(1992);
9
636-653
14
Manning W. J., von Tiedemann A..
Climate change: Potential effects of increased atmospheric carbon dioxide (CO2 ), ozone (O3 ), and ultraviolet-B (UV‐B) radiation on plant diseases.
Environmental Pollution.
(1995);
88
219-245
15
Matyssek R., Sandermann H..
Impact of ozone on trees: an ecophysiological perspective.
Progress in Botany.
(2003);
64
349-404
16
Möller E. M., Bahnweg G., Sandermann H., Geiger H. H..
A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues.
Nucleic Acids Research.
(1992);
20
6115-6116
17
Morelet M..
L'anthracnose des chênes et du hêtre en France.
Revue Forestière Française.
(1989);
41
488-496
18
Nunn A. J., Reiter I. M., Häberle K.-H., Werner H., Langebartels C., Sandermann H., Heerdt C., Fabian P., Matyssek R..
“Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech.
Phyton.
(2002);
42
105-119
19
Nunn A. J., Anegg S., Betz G., Simons S., Kalisch G., Seidlitz H., Grams T. E. E., Häberle K.-H., Matyssek R., Bahnweg G., Sandermann H., Langebartels C..
Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech.
Plant, Cell and Environment.
(2005);
28
886-897
20
Pehl L., Butin H..
Endophytische Pilze in Blättern von Laubbäumen und ihre Beziehungen zu Blattgallen (Zoocecidien).
Mitteilungen der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem.
(1994);
297
21 Petrini O.. Fungal endophytes of tree leaves. Andrews, J. H. and Hirano, S. S., eds. Microbial Ecology of Leaves. New York; Springer Verlag (1991): 179-187
22
Pretzsch H., Kahn M., Grote R..
Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches „Wachstum oder Parasitenabwehr?“ im Kranzberger Forst.
Forstwissenschaftliches Centralblatt.
(1998);
117
241-257
23 Pronos J., Merrill L., Dahlsten D.. Insects and pathogens in a pollution-stressed forest. Miller, P. R. and McBride, J. M., eds. Oxidant Air Pollution Impacts in the Montane Forest of Southern California, Ecological Studies, Vol. 134. Berlin, Heidelberg, New York; Springer Verlag (1999): 317-336
24
Reich P. B..
Quantifying plant response to ozone: a unifying theory.
Tree Physiology.
(1987);
3
63-91
25
Sandermann H..
Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool.
Environmental Pollution.
(2000);
108
327-332
26 Sandermann H., Matyssek R.. Scaling up from molecular to ecological processes. Sandermann, H. ed. Molecular Ecotoxicology of Plants, Ecological Studies, Vol. 170. Berlin; Springer Verlag (2004): 207-226
27
Schulze S., Bahnweg G., Möller E. M., Sandermann H..
Identification of the genus Armillaria by specific amplification of an rDNA‐ITS fragment and evaluation of genetic variation within A. ostoyae by rDNA-RFLP and RAPD analysis.
European Journal of Forest Pathology.
(1997);
27
225-239
28
Sieber T., Hugentobler C..
Endophytische Pilze in Blättern und Ästen gesunder und geschädigter Buchen (Fagus sylvatica L.).
European Journal of Forest Pathology.
(1987);
17
411-425
29 Sinclair J. B., Cernauskas R. F.. Latent infection vs. endophytic colonization by fungi. Redlin, S. C. and Carris, L. M., eds. Endophytic Fungi in Grasses and Woody Plants - Systematics, Ecology and Evolution. St. Paul, Minnesota; APS Press (1996): 3-29
30 Stevens (ed.) R. B.. Mycology Guidebook. Seattle; University of Washington Press (1974)
31
Stone J. K..
Initiation and development of latent infections by Rhabdocline parkeri on Douglas-fir.
Canadian Journal of Botany.
(1987);
65
2614-2621
32 Stone J. K., Bacon C. W., White J. F.. An overview of endophytic microbes: Endophytism defined. Bacon, C. W. and White, J. F., eds. Microbial Endophytes. New York; Marcel Dekker (2000): 3-29
33
Toti L., Viret O., Horat G., Petrini O..
Detection of the endophyte Discula umbrinella in buds and twigs of Fagus sylvatica .
European Journal of Forest Pathology.
(1993);
23
147-152
34
Turunen M., Heller W., Stich S., Sandermann H., Sutinen M. L., Norokorpi Y..
The effects of UV exclusion on the soluble phenolics of young Scots pine seedlings in the subarctic.
Environmental Pollution.
(1999);
106
219-228
35
Viret O., Petrini O..
Colonization of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda ).
Mycological Research.
(1994);
98
423-432
36
Werner H., Fabian P..
Free-air fumigation on mature trees: a novel system for controlled ozone enrichment in grown-up beech and spruce canopies.
Environmental Science and Pollution Research.
(2002);
9
117-121
37 White T. J., Bruns T., Lee S., Taylor J.. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds. PCR Protocols: A Guide to Methods and Applications. San Diego; Academic Press (1990): 315-322
38 Wilson D.. Ecology of woody plant endophytes. Bacon, C. W. and White, J. F., eds. Microbial Endophytes. New York; Marcel Dekker (2000): 389-420
39
Wilson D., Carroll G. C..
Infection studies of Discula quercina , an endophyte of Quercus garryana .
Mycologia.
(1994);
86
635-647
40
Zielke H., Sonnenbichler J..
Natural occurrence of 3,3′,4,4′-tetramethoxy-1,1′-biphenyl in leaves of stressed European beech.
Naturwissenschaften.
(1990);
77
384-385
G. Bahnweg
GSF - National Research Centre for Environment and Health Institute of Biochemical Plant Pathology
Ingolstädter Landstraße 1
85764 Neuherberg
Germany
eMail: bahnweg@gsf.de
Editor: H. Rennenberg