Neuropediatrics 2005; 36(6): 366-372
DOI: 10.1055/s-2005-873057
Original Article

Georg Thieme Verlag KG Stuttgart · New York

MRI and 1H‐MRS Findings in Early-Onset Cobalamin C/D Defect

D. Longo1 , G. Fariello1 , C. Dionisi-Vici2 , V. Cannatà1 , S. Boenzi2 , E. Genovese1 , F. Deodato2
  • 1Department of Paediatric Radiology, Bambino Gesù Children's Hospital, Rome, Italy
  • 2Division of Metabolism, Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, Italy
Weitere Informationen

Publikationsverlauf

Received: May 6, 2005

Accepted after Revision: November 19, 2005

Publikationsdatum:
23. Januar 2006 (online)

Abstract

Object: Cobalamin C/D defect is an inborn error of cobalamin metabolism causing methylmalonic aciduria and homocystinuria. The early-onset form is characterized by severe neurological impairment. The aim of this study was to evaluate and monitor brain damage in early-onset cbl-C/D defect by conventional MRI and to assess the additional value of 1H‐MRS. Methods: We retrospectively examined serial MRI studies of 7 patients, performed on a 1.5 T system. Four patients had the first evaluation within the first 4 months of life and three later. The imaging protocol included spin-echo T1-weighted, T2-weighted, IR, and FLAIR. Five patients underwent 1H‐MRS, using chemical shift imaging (CSI) in three patients and single voxel spectroscopy (SVS) in two. Results: Three of the patients studied early showed tetraventricular hydrocephalus and diffuse swelling of supratentorial white matter with involvement of the “U” fibres. Two showed patchy cavitating lesions in the basal ganglia. White matter changes became evident at a later stage. In three cases 1H‐MRS showed an abnormal peak of lactate in the basal ganglia or in the periventricular white matter. Conclusions: Our study shows severe heterogeneous brain MR abnormalities in cbl-C/D defect. We observed unusual basal ganglia lesions in 30 % of our cases and also found a high incidence of hydrocephalus and supratentorial white matter abnormalities.

References

  • 1 Biancheri R, Cerone R, Schiaffino M C, Caruso U, Veneselli E, Perrone M V. et al . Cobalamin (Cbl) C/D deficiency: clinical, neurophysiological and neuroradiological findings in 14 cases.  Neuropediatrics. 2001;  32 14-22
  • 2 Bodamer O, Fowler B. Cobalamin C/D. Proceeding of the 36 th EMG meeting, Rimini (Italy) May 14 - 16, 2004. 
  • 3 Enns G M, Barkovich A J, Rosenblatt D S, Fredrick D R, Weisiger K, Ohnstad C. et al . Progressive neurological deterioration and MRI changes in cblC methylmalonic acidemia treated with hydroxocobalamin.  J Inherit Metab Dis. 1999;  22 599-607
  • 4 Geraghty M T, Perlman E J, Martin L S, Hayflick S J, Casella J F, Rosenblatt D S. et al . Cobalamin C defect associated with hemolytic-uremic syndrome.  J Pediatr. 1992;  120 934-937
  • 5 Goodman S I, Moe P G, Hammond K B, Mudd S H, Uhlendorf B W. Homocystinuria with methylmalonic aciduria: two cases in a sibship.  Biochem Med. 1970;  4 500-515
  • 6 Greitz D, Greitz T. The pathogenesis and hemodynamics of hydrocephalus: proposal for a new understanding.  Int J Neuroradiol. 1997;  3 367-375
  • 7 Holshouser B A, Ashwal S, Luh G Y, Shu S, Kahlon S, Auld K L. et al . Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children.  Radiol. 1997;  202 487-496
  • 8 Horstmann M, Neumaier-Probst E, Lukacs Z, Steinfeld R, Ullrich K, Kohlschutter A. Infantile cobalamin deficiency with cerebral lactate accumulation and sustained choline depletion.  Neuropediatrics. 2003;  34 261-264
  • 9 Kolker S, Schwab M, Horster F, Sauer S, Hinz A, Wolf N I. et al . Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain.  J Biol Chem. 2003;  278 47388-47393
  • 10 Krageloh-Mann I, Grodd W, Schoning M, Marquard K, Nagele T, Ruitenbeek W. Proton spectroscopy in five patients with Leigh's disease and mitochondrial enzyme deficiency.  Dev Med Child Neurol. 1993;  35 769-776
  • 11 Lam W WM, Wang Z J, Zhao H, Berry G T, Kaplan P, Gibson J. et al . 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis.  Neuroradiol. 1998;  40 315-323
  • 12 McCully K S. Homocystinuria, arterioscleorosis, methylmalonic aciduria, and methyltransferase deficiency: a key case revisited.  Nutr Rev. 1992;  50 7-12
  • 13 Michel S J, Given II C A, Robertson Jr W C. Imaging of the brain, including diffusion-weighted imaging in methylmalonic academia.  Pediatr Radiol. 2004;  34 580-582
  • 14 Ricci D, Pane M, Deodato F, Vasco G, Randò T, Caviglia S. et al . Assessment of visual function in children with methylmalonic aciduria and homocystinuria.  Neuropediatrics. 2005;  36 181-185
  • 15 Rosenblatt D S, Aspler A L, Shevell M I, Pletcher B A, Fenton W A, Seashore M R. Clinical heterogeneity and prognosis in combined methylmalonic aciduria and homocystinuria (cblC).  J Inherit Metab Dis. 1997;  20 528-538
  • 16 Rossi A, Cerone R, Biancheri R, Gatti R, Schiaffino M C, Fonda C. et al . Early-onset combined methylmalonic aciduria and homocystinuria: Neuroradiologic findings.  AJNR Am J Neuroradiol. 2001;  22 554-563
  • 17 Suormala T, Baumgartner M R, Coelho D, Zavadakova P, Kozich V, Koch H G. et al . The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis.  J Biol Chem. 2004;  279 42742-42749
  • 18 Trinh B C, Melhem E R, Barker P B. Multi-slice proton MR spectroscopy and diffusion weighted imaging in methylmalonic acidemia: Report of two cases and review of the literature.  AJNR Am J Neuroradiol. 2001;  22 831-833
  • 19 Valenne L, Ketonen L, Majander A, Suomalaimen A, Pihko H. Neuroradiologic findings in children with mitochondrial disorders.  AJNR Am J Neuroradiol. 1998;  19 369-377

G. Fariello

Department of Paediatric Radiology
Bambino Gesù Children's Hospital

Piazza S. Onofrio 4

00165 Rome

Italy

eMail: giuseppefariello@aliceposta.it