Neuropediatrics 2005; 36(6): 373-379
DOI: 10.1055/s-2005-873077
Original Article

Georg Thieme Verlag KG Stuttgart · New York

Recruitment of the Sensorimotor Cortex - A Developmental fMRI Study

V. Mall1 , M. Linder1 , M. Herpers2 , A. Schelle1 , J. Mendez-Mendez3 , R. Korinthenberg1 , M. Schumacher3 , J. Spreer3
  • 1Department of Neuropediatrics and Muscle Disorders, University of Freiburg, Freiburg, Germany
  • 2Department of Neurology, University of Freiburg, Freiburg, Germany
  • 3Section of Neuroradiology, Department of Neurosurgery, University of Freiburg, Freiburg, Germany
Further Information

Publication History

Received: July 15, 2005

Accepted after Revision: December 1, 2005

Publication Date:
23 January 2006 (online)

Abstract

Introduction: The growing mastery of motor tasks is one of the most visible changes in the developing child. The cortex is known to play a central role in learning, planning, and performance of motor tasks. We investigated the age dependency of motor cortex activation using functional magnetic resonance imaging (fMRI). Methods: Thirty-two right-handed subjects were studied: 11 children (median age 9 years, range 6 - 10 years), 10 adolescents (median age 13 years, range 11 - 15 years), and 11 adults (median age 27 years, range 23 - 42 years). The subjects performed a simple, paced unilateral motor task (repetitive squeezing of a ball with the right hand). Also, we set up a control experiment (visual stimulation using an alternating checkerboard pattern) in which no age-related differences were expected. Results: Compared to children, adults showed significantly increased activation of the bilateral sensorimotor cortex, parietal areas, the supplementary motor area, and the cerebellum. In the visual stimulation experiment there were no age-related differences. Conclusion: Children show a significant difference in the degree of cortical activation compared to adults when performing a simple motor task. The change in fMRI activation patterns may reflect a maturation process of primary and secondary motor areas.

References

  • 1 Adleman N E, Menon V, Blasey C M, White C D, Warsofsky I S, Glover G H, Reiss A L. A developmental fMRI study of the stroop color-word task.  Neuroimage. 2002;  16 61-75
  • 2 Ahmad Z, Balsamo L M, Sachs B C, Xu B, Gaillard W D. Auditory comprehension of language in young children: neural networks identified with fMRI.  Neurology. 2003;  60 1598-1605
  • 3 Altman N R, Bernal B. Brain activation in sedated children: auditory and visual functional MR imaging.  Radiology. 2001;  221 56-63
  • 4 Backes W, Vuurman E, Wennekes R, Spronk P, Wuisman M, van Engelshoven J, Jolles J. Atypical brain activation of reading processes in children with developmental dyslexia.  J Child Neurol. 2002;  17 867-871
  • 5 Baird A A, Gruber S A, Fein D A, Maas L C, Steingard R J, Renshaw P F, Cohen B M, Yurgelun-Todd D A. Functional magnetic resonance imaging of facial affect recognition in children and adolescents.  J Am Acad Child Adolesc Psychiatry. 1999;  38 195-199
  • 6 Ball T, Schreiber A, Feige B, Wagner M, Lücking C H, Kristeva-Feige R. The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI.  Neuroimage. 1999;  10 682-694
  • 7 Binkofski F, Dohle C, Posse S, Stephan K M, Hefter H, Seitz R J, Freund H J. Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study.  Neurology. 1998;  50 1253-1259
  • 8 Bookheimer S Y, Dapretto M, Karmarkar U. Functional MRI in children with epilepsy.  Dev Neurosci. 1999;  21 191-199
  • 9 Booth J R, Burman D D, Van Santen F W, Harasaki Y, Gitelman D R, Parrish T B, Marsel Mesulam M M. The development of specialized brain systems in reading and oral-language.  Neurospsychol Dev Cogn Sect C Child Neuropsychol. 2001;  7 119-141
  • 10 Booth J R, Macwhinney B, Thulborn K R, Sacco K, Voyvodic J, Feldman H M. Functional organization of activation patterns in children: whole brain fMRI imaging during three different cognitive tasks.  Prog Neuropsychopharmacol Biol Psychiatry. 1999;  23 669-682
  • 11 Born P, Leth H, Miranda M J, Rostrup E, Stensgaard A, Peitersen B, Larsson H B, Lou H C. Visual activation in infants and young children studied by functional magnetic resonance imaging.  Pediatr Res. 1998;  44 578-583
  • 12 Casey B J, Cohen J D, Jezzard P, Turner R, Noll D C, Trainor R J, Giedd J, Kaysen D, Hertz-Pannier L, Rapoport J L. Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI.  Neuroimage. 1995;  2 221-229
  • 13 Ehrsson H H, Fagergren A, Jonsson T, Westling G, Johansson R S, Forssberg H. Cortical activity in precision- versus power-grip tasks: an fMRI study.  J Neurophysiol. 2000;  83 528-536
  • 14 Ehrsson H H, Kuthz-Buschbeck J P, Forssberg H. Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study.  J Neurosci. 2002;  22 5074-5080
  • 15 Eyre J A, Miller S, Clowry G J, Conway E A, Watts C. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres.  Brain. 2000;  123 51-64
  • 16 Fietzek U M, Heinen F, Berweck S, Maute S, Hufschmidt A, Schulte-Mönting J, Lücking C H, Korinthenberg R. Development of the corticospinal system and hand motor function: central conduction times and motor performance tests.  Dev Med Child Neurol. 2000;  42 220-227
  • 17 Forssberg H, Eliasson A C, Kinoshita H, Westling G, Johansson R S. Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition.  Exp Brain Res. 1995;  104 323-330
  • 18 Gaillard W D, Balsamo L, Ibrahim Z, Sachs B, Xu B. FMRI identifies regional specialization of neuronal networks for reading in young children.  Neurology. 2003;  60 94-100
  • 19 Gaillard W D, Grandin C B, Xu B. Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation.  Neuroimage. 2001;  13 239-249
  • 20 Garvey M A, Ziemann U, Bartko J J, Denckla M B, Barker C A, Wassermann E M. Cortical correlates of neuromotor development in healthy children.  Clin Neurophysiol. 2003;  114 1662-1670
  • 21 Georgiewa P, Rzanny R, Hopf J M, Knab R, Glauche V, Kaiser W A, Blanz B. FMRI during word processing in dyslexic and normal reading children.  Neuroreport. 1999;  10 3459-3465
  • 22 Gerardin E, Sirigu A, Lehericy S, Poline J B, Gaymard B, Marsault C, Agid Y, Le Bihan D. Partially overlapping neural networks for real and imagined hand movements.  Cereb Cortex. 2000;  10 1093-1104
  • 23 Goebel R, Khorram-Sefat D, Muckli L, Hacker J, Singer W. The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery.  Eur J Neurosci. 1998;  10 1563-1573
  • 24 Goebel R, Linden D E, Lanfermann H, Zanella F E, Singer W. Functional imaging of mirror and inverse reading reveals separate coactivated networks for oculomotion and spatial transformations.  Neuroreport. 1998;  9 713-719
  • 25 Goldman-Rakic P S. Development of cortical circuitry and cognitive function.  Child Dev. 1987;  58 601-622
  • 26 Heinen F, Glocker F X, Fietzek U M, Meyer B U, Lücking C H, Korinthenberg R. Absence of transcallosal inhibition following focal magnetic stimulation in pre-school children.  Ann Neurol. 1998;  43 608-612
  • 27 Hertz-Pannier L, Chiron C, Jambaque I, Renaux-Kieffer V, Van de Moortele P F, Delalande O, Fohlen M, Brunelle F, Le Bihan D. Late plasticity for language in a child's non-dominant hemisphere: a pre- and post-surgery fMRI study.  Brain. 2002;  125 361-372
  • 28 Hertz-Pannier L, Gaillard W D, Mott S H, Cuenod C A, Bookheimer S Y, Weinstein S, Conry J, Papero P H, Schiff S J, Le Bihan D, Theodore W H. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study.  Neurology. 1997;  48 1003-1012
  • 29 Huttenlocher P R, de Courten C, Garey L J, Van der Loos H. Synaptogenesis in human visual cortex - evidence for synapse elimination during normal development.  Neurosci Letters. 1982;  33 247-252
  • 30 Klingberg T, Forssberg H, Westerberg H. Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood.  J Cogn Neurosci. 2002;  14 1-10
  • 31 Kuhtz-Buschbeck J P, Ehrsson H H, Forssberg H. Human brain activity in the control of fine static precision grip forces: an fMRI study.  Eur J Neurosci. 2001;  14 382-390
  • 32 Largo R H, Caflisch J A, Hug F, Muggli K, Molnar A A, Molinari L. Neuromotor development from 5 to 18 years. Part 2: associated movements.  Dev Med Child Neurol. 2001;  43 444-453
  • 33 Largo R H, Caflisch J A, Hug F, Muggli K, Molnar A A, Molinari, Sheehy A, Gasser S T. Neuromotor development from 5 to 18 years. Part 1: timed performance.  Dev Med Child Neurol. 2001;  43 436-443
  • 34 Lee B C, Kuppusamy K, Grueneich R, El Ghazzawy O, Gordon R E, Lin W, Haacke E M. Hemispheric language dominance in children demonstrated by functional magnetic resonance imaging.  J Child Neurol. 1999;  14 78-82
  • 35 Logan W J. Functional magnetic resonance imaging in children.  Semin Pediatr Neurol. 1999;  6 78-86
  • 36 Marcar V L, Strässle A E, Loenneker T, Schwarz U, Martin E. The influence of cortical maturation on the BOLD response: an fMRI study of visual cortex in children.  Pediatr Res. 2004;  56 967-974
  • 37 Martin E, Joeri P, Loenneker T, Ekatodramis D, Vitacco D, Hennig J, Marcar V L. Visual processing in infants and children studied using functional MRI.  Pediatr Res. 1999;  46 135-140
  • 38 Nelson C A, Monk C S, Lin J, Carver L J, Thomas K M, Truwit C L. Functional neuroanatomy of spatial working memory in children.  Dev Psychol. 2000;  36 109-116
  • 39 Oldfield R C. The assessment and analysis of handedness: the Edinburgh inventory.  Neuropsychol. 1971;  9 97-113
  • 40 Richter W, Andersen P M, Georgopoulos A P, Kim S G. Sequential activity in human motor areas during a delayed cued finger movement task studied by time-resolved fMRI.  Neuroreport. 1997;  24 1257-1261
  • 41 Schlaggar B L, Brown T T, Lugar H M, Visscher K M, Miezin F M, Petersen S E. Functional neuroanatomical differences between adults and school-age children in the processing of single words.  Science. 2002;  296 1476-1479
  • 42 Souweidane M M, Kim K H, McDowall R, Ruge M I, Lis E, Krol G, Hirsch J. Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging.  Pediatr Neurosurg. 1999;  30 86-92
  • 43 Talairach J, Tournoux P. Co-planar Stereotaxic Atlas of the Human Brain. New York; Thieme Medical 1988
  • 44 Thomas K M, King S W, Franzen P L, Welsh T F, Berkowitz A L, Noll D C, Birmaher V, Casey B J. A developmental functional MRI study of spatial working memory.  Neuroimage. 1999;  10 327-338
  • 45 Touwen B CL, Prechtl H FR. The neurological examination of the child with minor nervous system dysfunction. Clinics in Developmental Medicine. London; Heinemann 1978: 1-105
  • 46 Turkeltaub P E, Gareau L, Flowers D L, Zeffiro T A, Eden G F. Development of neural mechanisms for reading.  Nat Neurosci. 2003;  6 767-773
  • 47 Waldvogel D, van Gelderen P, Ishii K, Hallett M. The effect of movement amplitude on activation in functional magnetic resonance imaging studies.  J Cereb Blood Flow Metab. 1999;  19 1209-1212
  • 48 Yousry I, Naidich T P, Yousry T A. Functional magnetic resonance imaging: factors modulating the cortical activation pattern of the motor system.  Neuroimaging Clin N Am. 2001;  11 195-202

MD Michaela Linder

Children's University Hospital
Department of Neuropediatrics and Muscle Disorders

Mathildenstrasse 1

79106 Freiburg

Germany

Email: linder@kikli.ukl.uni-freiburg.de