RSS-Feed abonnieren
DOI: 10.1055/s-2005-873114
Hyphenated NMR Methods in Natural Products Research, Part 2: HPLC-SPE-NMR and Other New Trends in NMR Hyphenation
Publikationsverlauf
Received: August 6, 2005
Accepted: August 8, 2005
Publikationsdatum:
19. September 2005 (online)
Abstract
This review describes the principles and performance of a novel and highly promising hyphenated technique, HPLC-SPE-NMR, which is based on post-column analyte trapping by solid-phase extraction. The analytes are subsequently eluted from the SPE cartridges using deuterated solvents. This indirect HPLC-NMR hyphenation offers numerous advantages compared to direct HPLC-NMR methods. Multiple trapping leads to a dramatic increase of analyte amounts available for NMR, enabling acquisition of high-quality 2D NMR data within a short time. Other new developments, including combination of solenoidal coil capillary flow-probes with microflow HPLC, are also discussed. Fast extract dereplication using these techniques enables focusing of isolation efforts on truly novel and promising natural products, based on precise structural data obtained with crude extracts or fractions.
Key words
Nuclear magnetic resonance - liquid chromatography - LC-NMR - HPLC-SPE-NMR - hyphenated techniques - microcoils - cryoprobes
References
- 1 Jaroszewski J W. Hyphenated NMR methods in natural products research part 1: direct hyphenation. Planta Med. 2005; 71 691-700
- 2 Hostettmann K, Wolfender J L, Rodriguez S. Rapid detection and subsequent isolation of bioactive constituents of crude plant extracts. Planta Med. 1997; 63 2-10
- 3 Wolfender J L, Ndjoko K, Hostettmann K. LC/NMR in natural products chemistry. Curr Org Chem. 1998; 2 575-96
- 4 Wolfender J L, Rodriguez S, Hostettmann K. Liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy for the screening of plant constituents. J Chromatogr A. 1998; 794 299-316
- 5 Hostettmann K, Terreaux C. Search for new lead compounds from higher plants. Chimia. 2000; 54 652-7
- 6 Wolfender J L, Terreaux C, Hostettmann K. The importance of LC-MS and LC-NMR in the discovery of new lead compounds from plants. Pharm Biol Suppl. 2000; 38 41-51
- 7 Bobzin S C, Yang S, Kasten T P. Application of liquid chromatography-nuclear magnetic resonance spectroscopy to the identification of natural products. J Chromatogr B. 2000; 748 259-67
- 8 Bobzin S C, Yang S, Kasten T P. LC-NMR: a new tool to expedite the dereplication and identification of natural products. J Ind Microbiol Biotechnol. 2000; 25 342-5
- 9 Vogler B, Spring O. Application of LC-NMR measurements in phytochemical analysis. Recent Research Develop Phytochemistry. 2000; 4 207-22
- 10 Hostettmann K, Wolfender J L, Terreaux C. Modern screening techniques for plant extracts. Pharm Biol Suppl. 2001; 39 18-32
- 11 Wolfender J L, Ndjoko K, Hostettmann K. The potential of LC-NMR in phytochemical analysis. Phytochem Anal. 2001; 12 2-22
-
12 Sanvoss M. Application of LC-NMR and LC-NMR-MS hyphenation to natural products analysis.
In: On-line LC-NMR and related techniques. Albert K, editor Chichester; Wiley & Sons; 2002.: p. 111-28. - 13 Hostettmann K, Marston A. Twenty years of research into medicinal plans: results and perspectives. Phytochem Rev. 2002; 1 275-85
- 14 Wolfender J L, Ndjoko K, Hostettmann K. Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J Chromatogr A. 2003; 1000 437-55
-
15 Wolfender J L, Ndjoko K, Hostettmann K. Application of LC-NMR in the structure elucidation of polyphenols.
In: Methods in polyphenol analysis . Santos-Buelga C, Williamson G, editors Cambridge; The Royal Society of Chemistry; 2003.: p. 128-56. - 16 Bringmann G, Lang G. Full absolute stereostructures of natural products directly from crude extracts: the HPLC-MS/MS-NMR-CD ‘triad’. Prog Mol Subcell Biol. 2003; 37 89-116
- 17 Urban S, Separovic F. Developments in hyphenated spectroscopic methods in natural product profiling. Front Drug Des Discov. 2005; 1 113-66
- 18 Exarchou V, Krucker M, van Beek T A, Vervoort J, Gerothanassis I P, Albert K. LC-NMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem. 2005; 43 681-7
- 19 Albert K. On-line use of NMR detection in separation chemistry. J Chromatogr A. 1995; 703 123-47
- 20 Korhammer S A, Bernreuther A. Hyphenation of high-performance liquid chromatography (HPLC) and other chromatographic techniques (SFC, GPC, GC, CE) with nuclear magnetic resonance (NMR): a review. Fresenius J Anal Chem. 1996; 354 131-5
- 21 Lindon J C, Nicholson J K, Wilson I D. The development and application of coupled HPLC-NMR spectroscopy. Adv Chromatogr. 1996; 36 315-82
- 22 Albert K. Liquid chromatography-nuclear magnetic resonance spectroscopy. J Chromatogr A. 1999; 856 199-211
- 23 Albert K, Dachtler M, Glaser T, Händel H, Lacker T, Schlotterbeck G. et al . On-line coupling of separation techniques to NMR. J High Resolut Chromatogr. 1999; 22 135-43
- 24 Lindon J C, Nicholson J K, Wilson I D. Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. J Chromatogr B. 2000; 748 233-58
- 25 Wilson I D. Multiple hyphenation of liquid chromatography with nuclear magnetic resonance spectroscopy, mass spectrometry and beyond. J Chromatogr B. 2000; 892 315-27
- 26 Albert K. , editor .On-line LC-NMR and related techniques. Chichester; Wiley & Sons; 2002.
- 27 Corcoran O, Spraul M. LC-NMR-MS in drug discovery. Drug Discov Today. 2003; 8 624-31
- 28 Elipe M VS. Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique. Anal Chim Acta. 2003; 497 1-25
- 29 Cardoza L A, Almeida V K, Carr A, Larive C K, Graham D W. Separation coupled with NMR detection. Trends Anal Chem. 2003; 22 766-75
-
30 Wann M H. Application of LC-NMR in pharmaceutical analysis.
In: Handbook of pharmaceutical analysis by HPLC. Ahuja S, Dong MV, editors Amsterdam; Elsevier; 2005. Vol. 6: p. 569-79. - 31 Pyrzynska K, Pobozy E. On-line coupling of solid phase extraction sample processing with high-performance liquid chromatography. Crit Rev Anal Chem. 2002; 32 227-43
- 32 De Koning J A, Hogenboom A C, Lacker T, Strohschein S, Albert K, Brinkman U AT. On-line trace enrichment in hyphenated liquid chromatography-nuclear magnetic resonance spectroscopy. J Chromatogr A. 1998; 813 55-61
- 33 Kokkonen P S, Niessen W MA, Tjaden U R, van der Greef J. Phase-system switching in liquid chromatography/continuous-flow fast-atom-bombardment mass spectrometry. Rapid Commun Mass Spectrom. 1991; 5 19-24
- 34 Wilcox C D, Phelan R M. The use of solid-phase extraction columns to effect simple offline LC/MS, LC/NMR, and LC/FTIR. J Chromatogr Sci. 1986; 24 130-3
- 35 Griffiths L, Horton R. Optimization of LC-NMR. III. Increased signal-to-noise ratio through column trapping. Magn Reson Chem. 1998; 36 104-9
- 36 Nyberg N T, Baumann H, Kenne L. Application of solid-phase extraction coupled to an NMR flow-probe in the analysis of HPLC fractions. Magn Reson Chem. 2001; 39 236-40
- 37 Nyberg N T, Baumann H, Kenne L. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria . Anal Chem. 2003; 75 268-74
- 38 Exarchou V, Godejohann M, van Beek T A, Gerothanassis I P, Vervoort J. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano. Anal Chem. 2003; 75 6288-94
- 39 Miliauskas G, van Beek T A, de Waard P, Venskutonis R P, Sudhölter E JR. Identification of radical scavenging compounds in Rhaponticum carthamoides by means of LC-DAD-SPE-NMR. J Nat Prod. 2005; 68 168-72
- 40 Seger C, Godejohann M, Tseng L H, Spraul M, Girtler A, Sturm S. et al . LC-DAD-MS/SPE-NMR hyphenation, a tool for the analysis of pharmaceutically used plant extracts: identification of isobaric glycoside regioisomers from Harpagophytum procumbens . Anal Chem. 2005; 77 878-85
- 41 Clarkson C, Stærk D, Hansen S H, Jaroszewski J W. Hyphenation of solid-phase extraction and nuclear magnetic resonance: application of HPLC-DAD-SPE-NMR to identification of constituents of Kanahia laniflora . Anal Chem. 2005; 77 3547-53
-
42 Lambert M, Stærk D, Hansen S H, Sairafianpour M, Jaroszewski J W. Rapid extract dereplication using HPLC-SPE-NMR: Analysis of isoflavonoids from Smirnowia iranica
. J Nat Prod, in press
- 43 Lambert M, Stærk D, Hansen S H, Jaroszewski J W. HPLC-SPE-NMR hyphenation in natural products research: optimization of analysis of Croton membranaceus extract. Magn Reson Chem. 2005; 43 771-7
- 44 Christophoridou S, Dais P, Tseng L H, Spraul M. Separation and identification of phenolic compounds in olive oil by coupling high-performance liquid chromatography with postcolumn solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR). J Agric Food Chem. 2005; 53 4667-79
- 45 Wang C Y, Lee S S. Analysis and identification of lignans in Phyllanthus urinaria by HPLC-SPE-NMR. Phytochem Anal. 2005; 16 120-6
- 46 Pukalskas A, van Beek T A, de Waard P. Development of a triple hyphenated HPLC-radical scavenging detection-DAD-SPE-NMR system for the rapid identification of antioxidants in complex plant extracts. J Chromatogr A. 2005; 1074 81-8
-
47 Jaroszewski J W. HPLC-SPE-NMR: A productivity tool for determination of natural products in plant material.
In: Magnetic resonance in food science, the multivariate challenge. Engelsen SB, Belton PS, Jacobsen HJ, editors Cambridge; The Royal Society of Chemistry; 2005.: p. 39-46. - 48 Simpson A J, Tseng L H, Simpson M J, Spaul M, Braumann U, Kingery W L. et al . The application of LC-NMR and LC-SPE-NMR to compositional studies of natural organic matter. Analyst. 2004; 129 1216-22
- 49 Godejohann M, Tseng L H, Braumann U, Fuchser J, Spraul M. Characterization of a paracetamol metabolite using on-line LC-SPE-NMR-MS and a cryogenic NMR probe. J Chromatogr A. 2004; 1058 191-6
- 50 Sandvoss M, Bardsley B, Beck T L, Lee-Smith E, North S E, Moore P J. et al . HPLC-SPE-NMR in pharmaceutical development: capabilities and applications. Magn Reson Chem. 2005; 43 762-70
- 51 Xu F, Alexander A J. The design of an on-line semi-preparative LC-SPE-NMR system for trace analysis. Magn Reson Chem. 2005; 43 776-82
- 52 Poole C F, Gunatilleka A D, Sethuraman R. Contributions of theory to method development in solid-phase extraction. J Chromatogr A. 2000; 885 17-39
- 53 Petritis K, Gillaizeau I, Elfakir C, Dreux M, Petit A, Bongibault N. et al . Evaporative light scattering detection for on-line monitoring of stopped-flow liquid chromatography-nuclear magnetic resonance analysis of compounds with weak or no chromophore groups. J Sep Sci. 2002; 25 593-600
- 54 Bringmann G, Messer K, Wohlfarth M, Kraus J, Dumbuya K, Rückert M. HPLC-CD on-line coupling in combination with HPLC-NMR and HPLC-MS/MS for the determination of the full absolute stereostructure of new metabolites in plant extracts. Anal Chem. 1999; 71 2678-86
- 55 Mistry N, Roberts A D, Tranter G E, Francis P, Barylski I, Ismail I M. et al . Directly coupled chiral HPLC-NMR and HPLC-CD spectroscopy as complementary methods for structural and enantiomeric isomer identification: application to atracurium besylate. Anal Chem. 1999; 71 2838-43
- 56 Bringmann G, Messer K, Saeb W, Peters E M, Peters K. The absolute configuration of (+)-isoshinanolone and in situ LC-CD analysis of its stereoisomers from crude extracts. Phytochemistry. 2001; 56 387-91
- 57 Somsen G W, Gooijer C, Brinkman U AT. Liquid chromatography-Fourier transform infrared spectrometry. J Chromatogr A. 1999; 856 213-42
- 58 Lacey M E, Subramanian R, Olson D L, Webb A G, Sweedler J V. High-resolution spectroscopy of sample volumes from 1 nL to 10 μL. Chem Rev. 1999; 99 3133-52
- 59 Hoult D I, Richards R E. Signal-to noise ratio of nuclear magnetic resonance experiment. J Magn Reson. 1976; 24 71-85
- 60 Schlotterbeck G, Ross A, Hochstrasser R, Senn H, Kühn T, Marek D. et al . High-resolution capillary tube NMR. A miniaturized 5-μL high-sensitivity TXI probe for mass-limited samples, off-line LC NMR, and HT NMR. Anal Chem. 2002; 74 4464-71
- 61 Peck T L, Magin R L, Lauterbur P C. Design and analysis of microcoils for NMR spectroscopy. J Magn Reson B. 1995; 108 114-24
- 62 Olson D L, Peck T L, Webb A G, Magin R L, Sweedler J V. High-resolution microcoil 1H NMR for mass-limited, nanoliter-volume samples. Science. 1995; 270 1967-70
- 63 Hu J F, Yoo H D, Williams C T, Garo E, Cremin P A, Zeng L. et al . Miniaturization of the structure elucidation of novel natural products - two trace antibacterial acylated caprylic alcohol glycosides from Arctostaphylos pumila . Planta Med. 2005; 71 176-80
- 64 Hu J F, Garo E, Yoo H D, Cremin P A, Zeng L, Goering M G. et al . Application of capillary-scale NMR for the structure determination of phytochemicals. Phytochem Anal. 2005; 16 127-33
- 65 Yoo H D, Cremin P A, Zeng L, Garo E, Williams C T, Lee C M. et al . Suaveolindole, a new mass-limited antibacterial indolosesquiterpene from Greenwayodendron suaveolens obtained via high-throughput natural products chemistry methods. J Nat Prod. 2005; 68 22-4
- 66 Wolfender J L, Queiroz E F, Hostettmann K. Phytochemistry in the microgram domain - an LC-NMR perspective. Magn Reson Chem. 2005; 43 697-709
- 67 Wu N, Webb A, Peck T L, Sweedler J V. On-line NMR detection of amino acids and peptides in microbore LC. Anal Chem. 1995; 67 3101-7
- 68 Subramanian R, Kelley W P, Floyd P D, Tan Z J, Webb A G, Sweedler J V. A microcoil NMR probe for coupling microscale HPLC with on-line NMR spectroscopy. Anal Chem. 1999; 71 5335-9
- 69 Wolters A M, Jayawickrama D A, Sweedler J V. Microscale NMR. Curr Opin Chem Biol. 2002; 6 711-6
- 70 Jayawickrama D A, Sweedler J V. Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy. J Chromatogr A. 2003; 1000 819-40
- 71 Olson D L, Norcross J A, O’Neil-Johnson M, Molitor P F, Detlefsen D J, Wilson A G. et al . Microflow NMR: concepts and capabilities. Anal Chem. 2004; 76 2966-74
- 72 Sandvoss M, Roberts A D, Ismail I M, North S E. Direct on-line hyphenation of capillary liquid chromatography to nuclear magnetic resonance spectroscopy: practical aspects and application to drug metabolite identification. J Chromatogr A. 2004; 1028 259-66
- 73 Hentschel P, Krucker M, Grynbaum M D, Putzbach K, Bischoff R, Albert K. Determination of regulatory phosphorylation sites in nanogram amounts of a synthetic fragment of ZAP-70 using microprobe NMR and on-line coupled capillary HPLC-NMR. Magn Reson Chem. 2005; 43 747-54
- 74 Lewis R J, Bernstein M A, Duncan S J, Sleigh C J. A comparison of capillary-scale LC-NMR with alternative techniques: spectroscopic and practical considerations. Magn Reson Chem. 2005; 43 783-9
- 75 Xiao H B, Krucker M, Putzbach K, Albert K. Capillary liquid chromatography-microcoil 1H nuclear magnetic resonance spectroscopy and liquid chromatography-ion trap mass spectrometry for on-line structure elucidation of isoflavones in Radix astragali . J Chromatogr A. 2005; 1067 135-43
- 76 Bailey N JC, Marshall I R. Development of ultrahigh-throughput NMR spectroscopic analysis utilizing capillary flow NMR technology. Anal Chem. 2005; 77 3947-53
- 77 Walton J H, de Ropp J S, Shutov M V, Goloshevsky A G, McCarthy M J, Smith R L. et al . A micromachined double-tuned NMR microprobe. Anal Chem. 2003; 75 5030-6
- 78 Macnaughtan M A, Hou T, Xu J, Raftery D. High-throughput nuclear magnetic resonance analysis using a multiple coil flow probe. Anal Chem. 2003; 75 5116-23
- 79 Wang H, Ciobanu L, Edison A S, Webb A G. An eight-coil high-frequency probehead design for high-throughput nuclear magnetic resonance spectroscopy. J Magn Reson. 2004; 170 206-12
- 80 Styles P, Soffe N F, Scott C A, Cragg D A, Row F, White D J. et al . A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J Magn Reson. 1984; 60 397-404
- 81 Spraul M, Freund A S, Nast R E, Withers R S, Maas W E, Corcoran O. Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: application to the analysis of acetaminophen metabolites in urine. Anal Chem. 2003; 75 1546-51
- 82 Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes - a leap in NMR technology. Prog Nucl Magn Reson Spectrosc. 2005; 46 131-55
- 83 Kautz R A, Lacey M E, Wolters A M, Foret F, Webb A G, Karger B L. et al . Sample concentration and separation for nanoliter-volume NMR spectroscopy using capillary isotachophoresis. J Am Chem Soc. 2001; 123 3159-60
- 84 Wolters A M, Jayawickrama D A, Larive C K, Sweedler J V. Capillary isotachophoresis/NMR: extension to trace impurity analysis and improved instrument coupling. Anal Chem. 2002; 74 2306-13
- 85 Jayawickrama D A, Sweedler J V. Dual microcoil NMR probe coupled to cyclic CE for continuous separation and analyte isolation. Anal Chem. 2004; 76 4894-900
- 86 Wolters A M, Jayawickrama D A, Sweedler J V. Comparative analysis of a neurotoxin from Calliostoma canaliculatum by on-line capillary isotachophoresis/1H NMR and diffusion 1H NMR. J Nat Prod. 2005; 68 162-7
- 87 Webb A G. Nuclear magnetic resonance coupled microseparations. Magn Reson Chem. 2005; 43 688-96
- 88 Barantin L, Le Pape A, Akoka S. A new method for absolute quantification of MRS metabolites. Magn Reson Med. 1997; 38 179-82
- 89 Akoka S, Barantin L, Trierweiler M. Concentration measurement by proton NMR using the ERETIC method. Anal Chem. 1999; 71 2554-7
- 90 Akoka S, Trierweiler M. Improvement of the ERETIC method by digital synthesis of the signal and addition of a broadband antenna inside the NMR probe. Instr Sci Technol. 2002; 30 21-9
- 91 Silvestre V, Goupry S, Trierweiler M, Robins R, Akoka S. Determination of substrate and product concentrations in lactic acid bacterial fermentations by proton NMR using the ERETIC method. Anal Chem. 2001; 73 1862-8
- 92 Frydman L, Lupulescu A, Scherf T. Principles and features of single-scan two dimensional NMR spectroscopy. J Am Chem Soc. 2003; 125 9204-17
- 93 Pelupessy P. Adiabatic single scan two-dimensional NMR spectroscopy. J Am Chem Soc. 2003; 125 12 345-50
- 94 Shrot Y, Shapira B, Frydman L. Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions. J Magn Reson. 2004; 171 163-70
- 95 Shapira B, Karton A, Aronzon D, Frydman L. Real-time 2D NMR identification of analytes undergoing continuous chromatographic separation. J Am Chem Soc. 2004; 126 1262-5
Prof. Jerzy W. Jaroszewski
Department of Medicinal Chemistry
The Danish University of Pharmaceutical Sciences
Universitetsparken 2
2100 Copenhagen
Denmark
Fax: +45-3530-6040
eMail: jj@dfuni.dk