Pathophysiologische Grundlagen der Schizophrenie und deren Relevanz für die Psychopharmakotherapie
Pathophysiology of Schizophrenia and its Impact on PharmacotherapyC. G. Widschwendter1
, W. W. Fleischhacker1
1Abteilung für Biologische Psychiatrie, Universitätsklinik für Psychiatrie, Medizinische Universität Innsbruck/Österreich
Prof. Fleischhacker hat finanzielle Forschungsunterstützung und Honorare von folgenden Firmen erhalten: Astra Zeneca, Bristol Myers Squibb, Eli Lilly, Janssen, Novartis, Organon, Otsuka, Pfizer, Sanofi-Synthelabo.
Ungefähr 1 % der Bevölkerung erkrankt an Schizophrenie. Zu den Hauptsymptomen zählen Halluzinationen, Wahn, Denkarmut, emotionaler und sozialer Rückzug sowie kognitive Defizite. Obwohl neuere Antipsychotika mit breiterem Rezeptorprofil umfassendere Therapiemöglichkeiten bieten, wird ein zufriedenstellendes Therapieansprechen bei vielen Patienten nicht erreicht. Trotz intensiver Forschung sind die molekularbiologischen Grundlagen der Schizophrenie nicht genau geklärt. Auch wenn pharmakologische Studien, funktionelle bildgebende Verfahren und Genforschung auf Veränderungen glutamaterger, GABAerger und serotonerger Systeme hinweisen, kommt der Dopaminhypothese in der Therapie nach wie vor eine zentrale Rolle zu. Dieser Artikel gibt einen Überblick über die pathophysiologischen Grundlagen der Schizophrenie, deren Relevanz für die Psychopharmakologie sowie einen Ausblick auf potenziell erfolgversprechende Forschungsansätze.
Abstract
Schizophrenia is a severe psychiatric illness with a lifetime morbidity risk of around 1 %. Symptoms include hallucinations, delusions, poverty of thought and emotion and social withdrawal and cognitive deficits. Although newer antipsychotics affecting multiple neurotransmitter receptors facilitate therapy, many patients still do not achieve full response. Despite intensive study, the molecular etiology of schizophrenia remains enigmatic in many ways. The dopamine hypothesis of schizophrenia still plays an important role, although pharmacological studies, brain imaging analyses and genetic research indicate additional dysfunctions of glutamate, GABA and serotonin transmission. This article reviews the pathophysiological background of the disorder, its implications for pharmacological treatment and possible directions for future research.
Literatur
1
Andreasen N C.
The evolving concept of schizophrenia: from Kraepelin to the present and future.
Schizophr Res.
1997;
28 (2 - 3)
105-109
2
Meltzer H Y, McGurk S R.
The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia.
Schizophr Bull.
1999;
25 (2)
233-255
7
Breier A, Su T P, Saunders R, Carson R E, Kolachana B S, Bartolomeis A de, Weinberger D R, Weisenfeld N, Malhotra A K, Eckelman W C, Pickar D.
Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method.
Proc Natl Acad Sci USA.
1997;
94 (6)
2569-2574
8
Laruelle M, Abi-Dargham A.
Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies.
J Psychopharmacol.
1999;
13 (4)
358-371
12
Krystal J H, Karper L P, Seibyl J P, Freeman G K, Delaney R, Bremner J D, Heninger G R, Bowers Jr M B, Charney D S.
Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
Arch Gen Psychiatry.
1994;
51 (3)
199-214
14
Lindvall O, Bjorklund A, Skagerberg G.
Dopamine-containing neurons in the spinal cord: anatomy and some functional aspects.
Ann Neurol.
1983;
14 (3)
255-260
15
Pycock C J, Kerwin R W, Carter C J.
Effect of lesion of cortical dopamine terminals on subcortical dopamine receptors in rats.
Nature.
1980;
286 (5768)
74-76
17
Carlsson A, Waters N, Waters S, Carlsson M L.
Network interactions in schizophrenia - therapeutic implications.
Brain Res Brain Res Rev.
2000;
31 (2 - 3)
342-349
21
Yang C R, Seamans J K, Gorelova N.
Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex.
Neuropsychopharmacology.
1999;
21 (2)
161-194
22
Farde L, Wiesel F A, Halldin C, Sedvall G.
Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs.
Arch Gen Psychiatry.
1988;
45 (1)
71-76
23
Nordstrom A L, Farde L, Wiesel F A, Forslund K, Pauli S, Halldin C, Uppfeldt G.
Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients.
Biol Psychiatry.
1993;
33 (4)
227-235
24
Kapur S, Seeman P.
Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis.
Am J Psychiatry.
2001;
158 (3)
360-369
27
Di Matteo V, Di Giovanni G, Di Mascio M, Esposito E.
SB 242 084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system.
Neuropharmacology.
1999;
38 (8)
1195-1205
28
Gobert A, Rivet J M, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas J P, Cistarelli L, Melon C, Millan M J.
Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat.
Synapse.
2000;
36 (3)
205-221
29
Celada P, Puig M V, Casanovas J M, Guillazo G, Artigas F.
Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors.
J Neurosci.
2001;
21 (24)
9917-9929
30
Ichikawa J, Meltzer H Y.
R(+)-8-OH-DPAT, a serotonin(1A) receptor agonist, potentiated S(-)-sulpiride-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens but not striatum.
J Pharmacol Exp Ther.
1999;
291 (3)
1227-1232
31
Kane J M, Carson W H, Saha A R, McQuade R D, Ingenito G G, Zimbroff D L, Ali M W.
Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder.
J Clin Psychiatry.
2002;
63 (9)
763-771
32
Schotte A, Janssen P F, Gommeren W, Luyten W H, Gompel P van, Lesage A S, Loore K de, Leysen J E.
Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding.
Psychopharmacology.
1996;
124 (1 - 2)
57-73
35
Hertel P, Fagerquist M V, Svensson T H.
Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade.
Science.
1999;
286 (5437)
105-107
36
Bolden C, Cusack B, Richelson E.
Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells.
J Pharmacol Exp Ther.
1992;
260 (2)
576-580
37
Felder C C, Porter A C, Skillman T L, Zhang L, Bymaster F P, Nathanson N M, Hamilton S E, Gomeza J, Wess J, McKinzie D L.
Elucidating the role of muscarinic receptors in psychosis.
Life Sci.
2001;
68 (22 - 23)
2605-2613
38
Parada M A, Hernandez L, Puig de Parada M, Rada P, Murzi E.
Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum.
J Pharmacol Exp Ther.
1997;
281 (1)
582-588
39
Ichikawa J, Dai J, O'Laughlin I A, Fowler W L, Meltzer H Y.
Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum.
Neuropsychopharmacology.
2002;
26 (3)
325-339
41 Gorelick D A, Balster R L. Phencyclidine (PCP). In: Bloom FE, Kupfer DJ (Hrsg.). Psychopharmacology: The Fourth Generation of Progress. New York: Raven Press 1995: 1767-1776
44
Goff D C, Herz L, Posever T, Shih V, Tsai G, Henderson D C, Freudenreich O, Evins A E, Yovel I, Zhang H, Schoenfeld D.
A six-month, placebo-controlled trial of D: -cycloserine co-administered with conventional antipsychotics in schizophrenia patients.
Psychopharmacology.
2005;
179 (1)
144-150