Subscribe to RSS
DOI: 10.1055/s-2005-915587
Die sensible Atemwegsinnervation und die Tachykinine bei Asthma und chronisch-obstruktiver Lungenerkrankung (COPD)
Airway Sensory Nerve and Tachykinins in Asthma and COPDPublication History
Eingang: 11. Juni 2004
Nach Revision akzeptiert: 30. August 2005
Publication Date:
07 February 2006 (online)
Zusammenfassung
Mit der Identifizierung und Charakterisierung von zahlreichen neuronalen Mediatoren gewann die Forschung der Innervierung der Atemwege in den letzten Jahren zunehmend an Bedeutung. Eine Reihe von Stimuli wie Capsaicin, Bradykinin, hyperosmotische Salzlösung, Zigarettenrauch, Allergene, Ozon, pro-inflammatorische Mediatoren und kalte trockene Luft sind in der Lage, sensible Atemwegsneurone zu aktivieren. Allergene können eine Freisetzung von Substanz P (SP) and Neurokinin A (NKA) induzieren. SP wird in den Zellkörpern der Atemwegsneurone des Ganglion trigeminale, des Ganglion jugulare und des Ganglion nodosum synthetisiert. Tachykinine haben einen pro-inflammatorischen Effekt auf die Atemwege und sind an neurogenen Entzündungen in den Atemwegen beteiligt. Weitere Tachykinine wie Virokinin und Hemokinin wurde vor kurzem entdeckt und charakterisiert. In den Atemwegen werden Tachykinine nach ihrer Freisetzung von Neutraler Endopeptidase (NEP) und einem angiotensinumwandelnden Enzym abgebaut. Tachykinine steuern den Tonus der glatten Atemwegsmuskulatur, die Schleimsekretion, die bronchialen Blutzirkulation sowie die Immunzellen nach Aktivierung des Neurokinin-1-(NK-1)- oder Neurokinin-2-(NK-2)-Rezeptors und sind vermutlich an der Pathogenese von Asthma bronchiale und COPD beteiligt. Während unterschiedliche Aspekte der neurogenen Entzündung im Tiermodell bisher mehr untersucht wurden, ist über die Rolle der neurogenen Atemwegsentzündung beim Menschen wenig bekannt. Um die genauere Rolle der sensiblen Atemwegsinnervation und der Tachykinine bei chronisch-entzündlichen Atemwegserkrankung wie Asthma bronchiale und COPD verstehen zu können, sind in Zukunft jedoch weitere Studien im Hinblick auf die Aktivierung der sensiblen Nervenfasern und die Interaktion zwischen Entzündungszellen und Atemwegsneuronen erforderlich.
Abstract
The airway nerve has gained importance in the field of respiratory research as it is known to have the capacity to release numerous mediators which can cause pulmonary effects in the airways. Meanwhile, a broad range of stimuli including capsaicin, bradykinin, hyperosmolar saline, tobacco smoke, allergens, ozone, inflammatory mediators and cold dry air have been shown to activate sensory nerve fibres to release neuropeptides such as the tachykinins substance P (SP) and neurokinin A (NKA) to mediate neurogenic inflammation. SP is synthesized in cell bodies of airway neurons of the trigeminal, jugulare and nodose ganglia. Following their release, tachykinins are degraded by neutral endopeptidase (NEP) and an angiotensin-converting enzyme. Tachykinins have been proposed to play an important role in human respiratory diseases such as bronchial asthma und chronic obstructive diseases (COPD) as they have been shown to have potent effects on the tone of airway smooth muscle, airway secretions, bronchial circulation and on inflammatory and immune cells by activation of the neurokinin-1 (NK-1) and neurokinin-2 (NK-2) receptors. Recently, new tachykinins such as virokinin and hemokinin were identified and characterised. Different aspects of the neurogenic inflammation have been well studied in animal models of allergic airway inflammation, but only little is known about the role of neurogenic airway inflammation in human diseases. To address the precise role of tachykinins and airway sensory nerves in human asthma und COPD, experiments on sensory nerve sensitisation and neuro-immune interaction have to be carried out in future studies.
Literatur
- 1 Barnes P J. Asthma as an axon reflex. Lancet. 1986; 1 (8475) 242-245
- 2 Barnes P J. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev. 2004; 56 (4) 515-548
- 3 Barnes P J, Chung K F, Page C P. Inflammatory mediators of asthma: an update. Pharmacol Rev. 1998; 50 (4) 515-596
- 4 Eynott P R, Groneberg D A, Caramori G. et al . Role of nitric oxide in allergic inflammation and bronchial hyperresponsiveness. Eur J Pharmacol. 2002; 452 (1) 123-133
- 5 Eynott P R, Paavolainen N, Groneberg D A. et al . Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation. J Pharmacol Exp Ther. 2003; 304 (1) 22-29
- 6 Joos G F, Pauwels R A. et al . Tachykinin receptor antagonists: potential in airways diseases. Curr Opin Pharmacol. 2001; 1 (3) 235-241
-
7 Willis T. Opera omnia 1681; Band II. Sect. 1, Cap. XI
- 8 Kummer W, Fischer A, Kurkowski R. et al . The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience. 1992; 49 (3) 715-737
- 9 Fischer A, McGregor G P, Saria A. et al . Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent neurons by allergic airway inflammation. J Clin Invest. 1996; 98 (10) 2284-2291
- 10 Dalsgaard C J, Lundberg J M. Evidence for a spinal afferent innervation of the guinea pig lower respiratory tract as studied by the horseradish peroxidase technique. Neurosci Lett. 1984; 45 (2) 117-122
- 11 Springall D R, Cadieux A, Oliveira H. et al . Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia. J Auton Nerv Syst. 1987; 20 155-166
- 12 Saria A, Martling C R, Yan Z. et al . Release of multiple tachykinins from capsaicin-sensitive sensory nerves in the lung by bradykinin, histamine, dimethylphenyl piperazinium, and vagal nerve stimulation. Am Rev Respir Dis. 1988; 137 (6) 1330-1335
- 13 Coleridge J C, Coleridge H M. Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol. 1984; 99 1-110
- 14 Ricco M M, Kummer W, Biglari B. et al . Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol. 1996; 496 (Pt 2) 521-530
- 15 Stretton D. Non-adrenergic, non-cholinergic neural control of the airways [editorial]. Clin Exp Pharmacol Physiol. 1991; 18 (10) 675-684
- 16 Verastegui C, Prada Oliveira A, Fernandez-Vivero J. et al . Calcitonin gene-related peptide immunoreactivity in adult mouse lung. Eur J Histochem. 1997; 41 (2) 119-126
- 17 Fischer A, Folkerts G, Geppetti P. et al . Mediators of asthma: nitric oxide. Pulm Pharmacol Ther. 2002; 15 (2) 73-81
- 18 Springer J, Geppetti P, Fischer A. et al . Calcitonin gene-related peptide as inflammatory mediator. Pulm Pharmacol Ther. 2003; 16 (3) 121-130
- 19 Karlsson J A, Finney M J, Persson C G. et al . Substance P antagonists and the role of tachykinins in non-cholinergic bronchoconstriction. Life Sci. 1984; 35 (26) 2681-2691
- 20 Li C G, Rand M J. Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical field stimulation is mediated by nitric oxide. Br J Pharmacol. 1991; 102 (1) 91-94
- 21 Lundberg J M, Hokfelt T, Martling C R. et al . Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res. 1984; 235 (2) 251-261
- 22 Euler U S, Gaddum J H. An unidentified depressor substance in certain tissue extracts. J Physiol. 1931; 72 74-87
- 23 Chang M M, Leeman S E, Niall H D. Amino-acid sequence of substance P. Nat New Biol. 1971; 232 (29) 86-87
- 24 Tatemoto K, Lundberg J M, Jornvall H. et al . Neuropeptide K: isolation, structure and biological activities of a novel brain tachykinin. Biochem Biophys Res Commun. 1985; 128 (2) 947-953
- 25 Harmar A J, Hyde V, Chapman K. Identification and cDNA sequence of delta-preprotachykinin, a fourth splicing variant of the rat substance P precursor. FEBS Lett. 1990; 275 (1 - 2) 22-24
- 26 Nawa H, Hirose T, Takashima H. et al . Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature. 1983; 306 (5938) 32-36
- 27 Kotani Y, Hirota Y, Sugiyama K. et al . Effects of noxious stimuli and anesthetic agents on substance P content in rat central nervous system. Jpn J Pharmacol. 1986; 40 (1) 143-147
- 28 Hua X Y, Theodorsson-Norheim E, Brodin E. et al . Multiple tachykinins (neurokinin A, neuropeptide K and substance P) in capsaicin-sensitive sensory neurons in the guinea-pig. Regul Pept. 1985; 13 (1) 1-19
- 29 Dinh Q T, Groneberg D A, Peiser C. et al . Expression of substance P and nitric oxide synthase in vagal sensory neurons innervating the mouse airways. Regul Pept. 2005; 126 (3) 189-194
- 30 Dinh Q T, Mingomataj E, Quarcoo D. et al . Allergic airway inflammation induces tachykinin peptides expression in vagal sensory neurons innervating mouse airways. Clin Exp Allergy. 2005; 35 (6) 820-825
- 31 Kollarik M, Dinh Q T, Fischer A. et al . Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol. 2003; 551 (3) 869-879
- 32 Dinh Q T, Groneberg D A, Peiser C. et al . Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating the mouse lung. Respir Physiol Neurobiol. 2004; 144 (1) 15-24
- 33 Hunter D D, Myers A C, Undem B J. Nerve growth factor-induced phenotypic switch in guinea pig airway sensory neurons. Am J Respir Crit Care Med. 2000; 161 (6) 1985-1990
- 34 Myers A C, Kajekar R, Undem B J. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol. 2002; 282 (4) L775-781
- 35 Undem B J, Hunter D D, Liu M. et al . Allergen-induced sensory neuroplasticity in airways. Int Arch Allergy Immunol. 1999; 118 (2 - 4) 150-153
- 36 Sikora E R, Stone S, Tomblyn S. et al . Asphalt exposure enhances neuropeptide levels in sensory neurons projecting to the rat nasal epithelium. J Toxicol Environ Health. 2003; 66 (11) 1015-1027
- 37 Hunter D D, Satterfield B E, Huang J. et al . Toluene diisocyanate enhances substance P in sensory neurons innervating the nasal mucosa. Am J Respir Crit Care Med. 2000; 161 (2 Pt 1) 543-549
- 38 Dinh Q T, Groneberg D A, Mingomataj E. et al . Expression of substance P and vanilloid receptor (VR1) in trigeminal sensory neurons projecting to the mouse nasal mucosa. Neuropeptides. 2003; 37 (4) 245-250
- 39 Dinh Q T, Groneberg D A, Witt C. et al . Expression of Tyrosine Hydroxylase and Neuropeptide Tyrosine in Mouse Sympathetic Airway-specific Neurons under Normal Situation and Allergic Airway Inflammation. Clin Exp Allergy. 2004; 34 (9) 1934-1941
- 40 Helke C J, Krause J E, Mantyh P W. et al . Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors, and regulatory mechanisms. Faseb J. 1990; 4 (6) 1606-1615
- 41 Fischer A, Kummer W, Couraud J Y. et al . Immunohistochemical localization of receptors for vasoactive intestinal peptide and substance P in human trachea. Lab Invest. 1992; 67 (3) 387-393
- 42 Canning B J, Fischer A, Undem B J. Pharmacological analysis of the tachykinin receptors that mediate activation of nonadrenergic, noncholinergic relaxant nerves that innervate guinea pig trachealis. J Pharmacol Exp Ther. 1998; 284 (1) 370-377
- 43 Joos G F, Germonpre P R, Pauwels R A. Role of tachykinins in asthma. Allergy. 2000; 55 (4) 321-337
- 44 Frossard N, Advenier C. Tachykinin receptors and the airways. Life Sci. 1991; 49 (26) 1941-1953
- 45 Joachim R A, Sagach V, Quarcoo D. et al . Neurokinin-1 receptor mediates stress-exacerbated allergic airway inflammation and airway hyperresponsiveness in mice. Psychosom Med. 2004; 66 (4) 564-571
- 46 Frossard N, Barnes P J. Effect of tachykinins in small human airways. Neuropeptides. 1991; 19 (3) 157-161
- 47 Crimi N, Oliveri R, Polosa R. et al . Effect of oral terfenadine on bronchoconstrictor response to inhaled neurokinin A and histamine in asthmatic subjects. Eur Respir J. 1993; 6 (10) 1462-1467
- 48 Frossard N, Rhoden K J, Barnes P J. Influence of epithelium on guinea pig airway responses to tachykinins: role of endopeptidase and cyclooxygenase. J Pharmacol Exp Ther. 1989; 248 (1) 292-298
- 49 Lei Y H, Barnes P J, Rogers D F. Inhibition of neurogenic plasma exudation in guinea-pig airways by CP-96,345, a new non-peptide NK1 receptor antagonist. Br J Pharmacol. 1992; 105 (2) 261-262
- 50 Quarcoo D, Schulte-Herbruggen O, Lommatzsch M. et al . Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent mechanism in a transgenic animal model of allergic airway inflammation. Clin Exp Allergy. 2004; 34 (7) 1146-1151
- 51 Mazzone S B. Targeting tachykinins for the treatment of obstructive airways disease. Treat Respir Med. 2004; 3 (4) 201-216
- 52 Barnes P J, Shapiro S D, Pauwels R A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003; 22 (4) 672-688
- 53 Shimosegawa T, Foda H D, Said S I. [Met]enkephalin-Arg6-Gly7Leu8-immunoreactive nerves in guinea-pig and rat lungs: distribution, origin, and co-existence with vasoactive intestinal polypeptide immunoreactivity. Neuroscience. 1990; 36 (3) 737-750
Q. Thai Dinh, MD
Medizinische Klinik mit Schwerpunkt Psychosomatik und Klinische Forschergruppe Allergologie · Charité - Universitätsmedizin Berlin, Germany
Augustenburger Platz 1
13353 Berlin
Germany
Email: q-thai.dinh@charite.de