Synthesis 2005(18): 3051-3058  
DOI: 10.1055/s-2005-916026
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Organic Thiosulfates Tailored for the Electrochemical Deposition of ‘Self-Assembled Monolayers’ at Gold Surfaces

Eliso Gogritchiani*a, Sandra Nieblera, Nicole Egnera, Michael Wörnera, André M. Braun*a, Tanya Youngb, Prachi Guptab, Aibin Shib, Stefan H. Bossmann*a,b
a University of Karlsruhe, Department of Chemical & Process Engineering, 76128 Karlsruhe, Germany
e-Mail: eliso.g@ciw.uni-karlsruhe.de; e-Mail: andre.braun@ciw.uni-karlsruhe.de;
b Kansas State University, Department of Chemistry, 111 Willard Hall, Manhattan, Kansas 66506-3701, USA
Fax: +1(785)5326666; e-Mail: sbossman@ksu.edu;
Weitere Informationen

Publikationsverlauf

Received 28 April 2005
Publikationsdatum:
16. September 2005 (online)

Abstract

The synthesis of organic thiosulfates, up to 10 nm in length, which were tailored for generating artificial monomembranes on gold surfaces by electrochemically initiated deposition, was accomplished. (E)-3-(4-Hydroxyphenyl)acrylic acid (4-hydroxy cinnamic acid) was employed as aromatic head group and (C10H20-O-)n (n = 1, 3, 5, 7) building blocks were attached. The synthetic procedure comprises a series of nucleophilic substitutions under carefully defined conditions. Extended purification is crucial for eliminating non-reacted starting materials.

    References

  • 1 Boullanger P. Chevalier Y. Croizier M.-C. Lafont D. Sancho M.-R. Carbohydr. Res.  1995,  278:  91 
  • 2 Molina L. Papadopoulos D. Selve C. New J. Chem.  1995,  19:  813 
  • 3 Matsumura Y. Kito M. Surfactant Science Series  2001,  101:  123 
  • 4 Piispanen PS. Norin T. J. Org. Chem.  2003,  68:  628 
  • 5 Fitremann J. Bouchu A. Queneau Y. Langmuir  2003,  19:  9981 
  • 6 Balcom BJ. Petersen NO. Langmuir  1991,  7:  2425 
  • 7 Laakel N. Rubini P. Rodehuser L. New J. Chem.  1991,  15:  345 
  • 8 Costes F. Ghoul ME. Bon M. Rico-Lattes I. Lattes A. Langmuir  1995,  11:  3644 
  • 9 Prata C. More N. Lacombe J.-M. Maurizis J.-C. Pucci B. Carbohydr. Res.  1999,  321:  4 
  • 10 Satge C. Granet R. Verneuil B. Champavier Y. Krausz P. Carbohydr. Res.  2004,  339:  1243 
  • 11 Sawada H. Itoh N. Kawase T. Mitani M. Nakajima H. Nishida M. Moriya Y. Langmuir  1994,  10:  994 
  • 12 Sawada H. Ohashi A. Baba M. Kawase T. Hayakawa Y. J. Fluorine Chem.  1996,  79:  149 
  • 13 Sawada H. Tanba K.-i. Itoh N. Hosoi C. Oue M. Baba M. Kawase T. Mitani M. Nakajima H. J. Fluorine Chem.  1996,  77:  51 
  • 14 Sawada H. Kawase T. Ikematsu Y. Ishii Y. Oue M. Hayakawa Y. Chem. Commun.  1996,  886 
  • 15 Miyamoto M. Aoi K. Saegusa T. Macromolecules  1989,  22:  3540 
  • 16 Cai Y. Burguiere C. Armes SP. Chem. Commun.  2004,  802 
  • 17 Pokhrel MR. Bossmann SH. J. Phys. Chem. B  2000,  104:  2215 
  • 18 Rasheed K. Industrial syntheses of surfactants   Lange KR. Carl Hanser Verlag; Munich, Germany: 1999.  p.69-130  
  • 19 Texter J. Reactions and Synthesis in Surfactant Systems   Marcel Dekker; New York: 2001.  p.1-909  
  • 20 Katz E. Willner I. In Advanced Macromolecular and Supramolecular Materials and Processes  Geckeler, K. E., Ed.; Kluwer Academic/Publishers Plenum; New York: 2003.  p.175-196  
  • 21 Ropers M.-H. Brezesinski G. Mohwald H. Studies in Interface Science   Vol. 16 (Organized Monolayers and Assemblies: Structure Processes and Function):  Möbius, D.; Miller, R., Eds.; Elsevier; Amsterdam: 2002.  p.207-246  
  • 22 Heinz C. Engelhardt H. Niederweis M. J. Biol. Chem.  2003,  278:  8678 
  • 23 Gabriel JL. Chong PLG. Chem. Phys. Lipids  2000,  105:  193 
  • 24 Chong PL.-G. Zein M. Khan TK. Winter R. J. Phys. Chem. B  2003,  107:  8694 
  • 25 Schuster B. Weigert S. Pum D. Sára M. Sleytr UB. Langmuir  2003,  19:  2392 
  • 26 Niederweis M. Bossmann SH. Encyclopedia of Nanoscience and Nanotechnology   Vol. 7:  Nalwa, H. S., Ed.; American Scientific Publishers; Stevenson Ranch, CA, USA: 2004.  p.851-867  
  • 27 Bossmann SH. Janik K. Pokhrel MR. Heinz C. Niederweis M. Surf. Interface Anal.  2004,  36:  127 
  • 28 Faller M. Niederweis M. Schulz GE. Science  2004,  303:  1189 
  • 29 Scharf J. Strehblow H.-H. Zeysing B. Terfort A. J. Solid State Electrochem.  2001,  5:  396 
  • 30 Schönenberger C. Sondag-Huethorst JAM. Jorritsma J. Fokkink LGJ. Langmuir  1994,  10:  611 
  • 31 Boubour E. Lennox RB. Langmuir  2000,  16:  4222 
  • 32 Lukkari J. Meretoja M. Kartio I. Laajalehto K. Rajamaeki M. Lindstroem M. Kankare J. Langmuir  1999,  15:  3529 
  • 33 Distler H. Angew. Chem., Int. Ed. Engl.  1967,  6:  544 
  • 34 Mumma RO. Fujitani K. Hoiberg CP. J. Chem. Eng. Data  1970,  15:  358 
  • 35 Naud C. Calas P. Blancou H. Commeyras A. J. Fluorine Chem.  2000,  104:  173 
  • 36 Shorter J. Nucleophilic Aliphatic Substitution, In Organic Reaction Mechanisms, 2000   Knipe AC. Watts WE. John Wiley & Sons; New York: 2004.  p.277-306  
  • 37 Repasky MP. Chandrasekhar J. Jorgensen WL. J. Comput. Chem.  2002,  23:  1601 
  • 38 Brown WH. Foote CS. Iverson BL. Organic Chemistry   Thomson Learning (Brooks Cole); Belmont CA: 2005.  p.432-437  
  • 39 Ackermann J. Videlot C. Nguyen TN. Wang L. Sarro PM. Fages F. Adv. Mater. (Weinheim, Ger.)  2004,  16:  1709 
  • 40 Teixeira S. Giudici R. Bossmann SH. Lang J. Braun AM. Chem. Eng. Process.  2004,  43:  1317 
  • 41 Kang SK. Kim WS. Moon BH. Synthesis  1985,  1161 
  • 42 Duerr H. Kilburg H. Bossmann S. Synthesis  1990,  773 
  • 43 Bossmann S. Seiler M. Dürr H. J. Phys. Org. Chem.  1992,  5:  63 
  • 44 Bossmann SH. Dürr H. Pokhrel MR. Synthesis  2005,  907 
  • 45 Keana JF. Heo GS. Mann JS. Nice FLV. Lex L. Prabhu VS. Ferguson G. J. Org. Chem.  1988,  53:  2268 
  • 46 Shorter J. Nucleophilic Aliphatic Substitution, In Organic Reaction Mechanisms, 1985   Knipe AC. Watts WE. John Wiley & Sons; New York: 1985.  p.299-328