RSS-Feed abonnieren
DOI: 10.1055/s-2005-916186
Enhanced ROS-Generation in Lymphocytes from Alzheimer’s Patients
Publikationsverlauf
Received: 1.5.2005
Revised: 1.7.2005
Accepted: 8.7.2005
Publikationsdatum:
08. Dezember 2005 (online)
Introduction: Reactive oxygen species (ROS) have been implicated in neurodegeneration and seem to be involved in the physiology and pathophysiology of several diseases, including normal aging and Alzheimer’s disease (AD). Enhanced ROS production in aging or AD is not restricted to the brain, but can also been seen in several peripheral tissues. The objective of the present study was to evaluate whether the mechanisms involved in the generation of oxidative stress in normal senescence and Alzheimer’s disease are identical or not. Methods: We analysed intracellular basal levels of ROS in lymphocytes from AD patients and healthy young and aged not-demented subjects as well as ROS levels following stimulation with d-ribose and staurosporine in all three groups. ROS levels were measured by flow cytometry using the intracellular fluorescence dye dihydrorhodamine123 (DHR123). Results: Our study shows that AD lymphocytes have increased basal levels of ROS, low susceptibility to ROS stimulation by 2-deoxy-D-ribose (dRib) and an increased response to staurosporine when compared with age-matched controls. Discussion: The data suggest that the defect(s) responsible for enhanced ROS production in AD may involve different or additional biological pathways than those involved in enhanced ROS generation during aging.
References
- 1 Butterfield D A, Howard B, Yatin S, Koppal T, Drake J, Hensley K, Aksenov M, Aksenova M, Subramaniam R, Varadarajan S, Harris-White M E, Pedigo N WJ, Carney J M. Elevated oxidative stress in models of normal brain aging and Alzheimer’s disease. Life Sci. 1999; 65 1883-1892
- 2 Cai J, Wallace D C, Zhivotovsky B, Jones D P. Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. Free Radic Biol Med. 2000; 29 334-342
- 3 Cecchi C, Latorraca S, Sorbi S, Iantomasi T, Favilli F, Vincenzini M T, Liguri G. Gluthatione level is altered in lymphoblasts from patients with familial Alzheimer's disease. Neurosci Lett. 1999; 275 152-154
- 4 Cecchi C, Fiorillo C, Sorbi S, Latorrace S, Nacmias B, Bagnoli S, Nassi P, Liguri G. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Radic Biol Med. 2002; 33 1372-1379
- 5 De Leo M E, Borrello S, Passantino M, Palazzotti B, Mordente A, Daniele A, Filippini V, Galeotti T, Masullo C. Oxidative stress and overexpression of manganese superoxide dismutase in patients with Alzheimer's disease. Neurosci Lett. 1998; 250 173-176
- 6 Drouet M, Lauthier F, Charmes J P, Sauvage P, Ratinaud M H. Age-associated changes in mitochondrial parameters on peripheral human lymphocytes. Exp Gerontol. 1999; 34 843-852
- 7 Eckert A, Forstl H, Zerfass R, Oster M, Hennerici M, Muller W E. Changes of intracellular calcium regulation in Alzheimer's disease and vascular dementia. J Neural Transm Suppl. 1998; 54 201-210
- 8 Eckert A, Hartmann H, Muller W E. Beta-Amyloid protein enhances the mitogen-induced calcium response in circulating human lymphocytes. FEBS Lett. 1993; 330 49-52
- 9 Eckert A, Schindowski K, Leutner S, Luckhaus C, Touchet N, Czech C, Müller W E. Alzheimer’s disease-like alterations in peripheral cells from Presenilin-1 transgenic mice. Neurobiol Disease. 2001; 8 331-342
- 10 Gibson G E, Zhang H, Sheu K R, Park L C. Differential alterations in antioxidant capacity in cells from alzheimer patients. Biochim Biophys Acta. 2000; 15 319-329
- 11 Huang H M, Fowler C, Xu H, Zhang H, Gibson G E. Mitochondrial function in fibroblasts with aging in culture and/or Alzheimer’s disease. Neurobiol Aging. 2005; 26 839-848
- 12 King C M, Gillespie E S, McKenna P G, Barnett Y A. An investigation of mutation as a function of age in humans. Mutat Res. 1994; 316 79-90
- 13 Kletsas D, Barbieri D, Stathakos D, Botti B, Bergamini S, Tomasi A, Monti D, Malorni W, Franceschi C. The highly reducing sugar 2-deoxy-D-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochem Biophys Res Commun. 1998; 243 416-425
- 14 Kruman I I, Mattson M P. Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem. 1999; 72 529-540
- 15 Lenton K J, Therriault H, Cantin A M, Fulop T, Payette H, Wagner J R. Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. Am J Hum Genet. 2000; 71 1194-1200
- 16 Leutner S, Eckert A, Müller W E. ROS generation, lipid peroxidation and antioxidant enzyme activites in the aging brain. J Neural Transm. 2001; 108 955-967
- 17 Markesbery W R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997; 23 134-147
- 18 Mecocci P, Polidori M C, Ingegni T, Cherubini A, Chionne F, Cecchetti R, Senin U. Oxidative damage to DNA in lymphocytes from AD patients. Neurology. 1998; 51 1014-1017
- 19 Mecocci P, polidori C, Cherubini A, Ingegni T, Mattioli P, Catani M, Rinaldi P, Ceccetti R, Stahl W, Senin U, Beal F. Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch Neurol. 2002; 59 794-798
- 20 Migliore L, Fontana I, Trippi F, Colognato R, Coppedé F. Tognoni G, Nucciarone B, Siciliano G. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging. 2005; 26 567-573
- 21 Morocz M, Kalman J, Juhasz A, Sinko I, McGlynn A P, Downes C S, Janka Z, Rasko I. Elevated levels of oxidative DNA damage in lymphocytes from patients with Alzheimer’s disease. Neurobiol Aging. 2002; 23 47-53
- 22 Schindowski K, Leutner S, Muller W E, Eckert A. Age-related changes of apoptotic cell death in human lymphocytes. Neurobiol Aging. 2000; 21 661-670
- 23 Schindowski K, Kratsch T, Peters J, Steiner B, Leutner S, Touchet N, Maurer K, Czech C, Pradier L, Frölich L, Müller W E, Eckert A. Impact of aging, sporadic and genetic risk factors on vulnerability to apoptosis in Alzheimer’s disease. Neuromolecular Med. 2003; 4 161-177
- 24 Smith M A, Rottkamp C A, Nunomura A, Raina A K, Perry B. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta. 2000; 1502 139-144
- 25 Smith M A, Nunomura A, Lee H, Zhu X, Moreira P I, Avila J, Perry G. Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging. 2005; 26 579-588
Walter E. Müller, Ph. D.
Department of Pharmacology
J. W. Goethe-University
Biocenter
Niederursel
Marie-Curie-Str. 9
60439 Frankfurt
Telefon: +49 69 798 29373
Fax: +49 69798 29374
eMail: pharmacolnat@em.uni-frankfurt.de