Planta Med 2006; 72(3): 281-284
DOI: 10.1055/s-2005-916193
Letter
© Georg Thieme Verlag KG Stuttgart · New York

Gambogic Acid and Epigambogic Acid, C-2 Epimers with Novel Anticancer Effects from Garcinia hanburyi

Quanbin Han1 , Ling Yang2 , Yong Liu2 , Yulin Wang2 , Chunfeng Qiao1 , Jingzheng Song1 , Lijia Xu3 , Dajian Yang3 , Shilin Chen3 , Hongxi Xu1
  • 1Chinese Medicine Laboratory, Hong Kong Jockey Club Institute of Chinese Medicine, Shatin, N.T., Hong Kong, P. R. China
  • 2Laboratory of Pharmaceutical Resources Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
  • 3Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Weitere Informationen

Publikationsverlauf

Received: July 13, 2005

Accepted: August 18, 2005

Publikationsdatum:
05. Dezember 2005 (online)

Abstract

Gambogic acid, usually isolated as an inseparable stereomeric mixture of C-2 epimers, was newly separated into two epimers (1 and 2) from the gamboges of Garcinia hanburyi. The stereochemistry at C-2 was clearly defined by extensive spectroscopic analysis and direct comparison of NMR and HPLC data with those of the known R-epimer. Both epimers were examined for their cytotoxicities against human leukemia K562 (K562/S) and doxorubicin-resistant K562 (K562/R) cell lines. Different from doxorubicin (IC50 = 10.78 μM for K562/R and 0.66 μM for K562/S), epimers 1 and 2 exhibited similar activities against both cell lines (IC50 = 1.32 and 0.89 μM for 1, IC50 = 1.11 and 0.86 μM for 2). These results suggested that both epimers were not multidrug resistance (MDR) substrates. Furthermore, epimers 1 and 2 were tested for their inhibitory effects against six human cytochrome P-450 enzymes. Epimers 1 and 2 showed little inhibitory effects toward five of the enzymes except CYP2C9. Interestingly, when tested against CYP2C9, S-epimer 2 had an inhibitory effect 20-fold stronger than that of R-epimer 1.

References

  • 1 Lin L J, Lin L Z, Pezzuto J M, Cordell G A. Isogambogic acid and isomorellinol from Garcinia hanburyi .  Magn Reson Chem. 1993;  31 340-7
  • 2 Asano J, Chiba K, Tada M, Yoshi T. Cytotoxic xanthones from Garcinia hanburyi .  Phytochemistry. 1996;  41 815-20
  • 3 Tseng B, Sirisoma N S, Cai S X, Zhang H Z, Kasibhatia S, Ollis K P. et al .Derivatives of gambogic acid and analogs as activators of caspases and inducers of apoptosis. PCT Int Appl 2004: WO 2 004 002 428
  • 4 Lei Q M, Liu J M. Retrospect and prospect of anti-cancer efficacy of gamboges.  Chin J Canc Prev Treat. 2003;  10 216-9
  • 5 Guo Q L, Zhao L, You Q D, Wu Z Q, Gu H Y. Gambogic aicd inducing apoptosis in human gastric adenocarcinom SGC-7901 cells.  Chin J Nat Med. 2004;  2 106-10
  • 6 Guo Q L, You Q D, Yuan S T, Zhao L. General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice.  Acta Pharmacol Sin. 2004;  25 769-74
  • 7 Wu Z Q, Guo Q L, You Q D, Zhao L. Growth inhibitory effect of GGAs on experimental tumor in mice and human tumor cell cultured in vitro .  Chin J Nat Med. 2004;  2 99-102
  • 8 Zhao L, Guo Q L, You Q D, Wu Z Q, Gu H Y. Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells.  Biol Pharm Bull. 2004;  27 998-1003
  • 9 Wu Z Q, Guo Q L, You Q D, Zhao L, Gu H Y. Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells.  Biol Pharm Bull. 2004;  27 1769-74
  • 10 Cardillo G, Merlini L. Absolute configuration of carbon 2 in the chromene ring of gambogic acid. Tetrahedron Lett 1967: 2529-30
  • 11 Weakley T JR, Cai S X, Zhang H Z, Keanal J FW. Crystal structure of the pyridine salt of gambogic acid.  J Chem Crystallogr. 2001;  31 501-5
  • 12 Zhang H Z, Kasibhatia S, Wang Y, Herich J, Guastella J, Tseng B. et al . Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay.  Bioorg Med Chem. 2004;  12 309-17
  • 13 Beringer P M, Slaughter R L. Transporters and their impact on drug disposition.  Ann Pharmacother. 2005;  39 1097-108
  • 14 Antoniou T, Tseng A L. Interactions between antiretrovirals and antineoplastic drug therapy.  Clin Pharmacokinet. 2005;  44 111-45
  • 15 Goldstein J A, Morais S M. Biochemistry and molecular biology of the human CYP2C subfamily.  Pharmacogenetics. 1994;  4 285-99
  • 16 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay.  J Immunol Methods. 1983;  65 5-63
  • 17 Sanderink G J, Bournique B, Stevens J, Petry M, Martinet M. Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro .  J Pharm Exper Therap. 1997;  282 1465-72
  • 18 Lowry O H, Roseborough N J, Farr A L, Randall R J. Protein measurement with the folin phenol reagent.  J Biol Chem. 1951;  193 265-75

Dr. Hongxi Xu

Hong Kong Jockey Club Institute of Chinese Medicine

Shatin

N.T.

Hong Kong

People’s Republic of China

Fax: +852-2603-6263

eMail: xuhongxi@hkjcicm.org