Am J Perinatol 2005; 22(8): 429-436
DOI: 10.1055/s-2005-916333
Copyright © 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Umbilical Cord Unbound Free Fatty Acid Concentration and Low Apgar Score

Jose Mari S. Yuvienco1 , Ma. Emily C. Dizon1 , Alan Kleinfeld3 , Mujahid Anwar2 , Mark Hiatt2 , Thomas Hegyi1
  • 1Division of Neonatology, Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey
  • 2Division of Neonatology, St. Peter's University Hospital, New Brunswick, New Jersey
  • 3Torrey Pines Institute for Molecular Studies, San Diego, California
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. September 2005 (online)

ABSTRACT

Increased levels of unbound Free Fatty acid (FFAu) have been found in adults undergoing coronary angioplasty as a result of acute hypoxia-ischemia. We hypohesized that infants suffering from a 1-minute Apgar score of less than 5 will demonstrate elevated FFAu levels in the cord blood. One hundred ninety-nine infants between 25 and 41 weeks gestational age were enrolled in the study. Infants with an Apgar score of less than 5 at 1 minute served as the study group. Blood samples were collected from the umbilical cord and serum FFAu levels were measured with the fluorescent probe acrylodan-derivatized intestinal fatty acid binding protein. The low Apgar score group (n = 32, birthweight 3153 ± 780 g, gestational age 37.9 ± 3.1 weeks) and normal Apgar score group (n = 167, birthweight 3067 ± 847 g, gestational age 37.5 ± 3.5 weeks) were significantly different with respect to Apgar score at 1 minute (3.0 ± 1.2 versus 8.4 ± 1.1), Apgar score at 5 minutes (6.9 ± versus 8.9 ± 0.5), cord pH (7.16 ± 0.12 versus 7.28 ± 0.07), and in the frequency of meconium passage (40.6% versus 14.9%). Cord FFAu levels were 4.4 ± 1.7 versus 3.2 ± 1.2 nM (p < 0.001), respectively. Cord FFAu correlated inversely with Apgar score at 1 minute (r = -0.31, p < 0.05) and with cord pH (r = -0.12, p < 0.05), but not with birthweight or gestational age. In infants with low 1-minute Apgar scores, cord free fatty acid levels were significantly elevated compared with those from controls.

REFERENCES

  • 1 Spector A A, Fletcher J E. Transport of fatty acid in the circulation. In: Dietschy JM, Gotto AM, Ontko A Disturbances in Lipid and Lipoprotein Metabolism. Bethesda, MD; American Physiological Society 1978: 229-249
  • 2 Katz A M, Messineo F C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium.  Circulation. 1981;  48 1-16
  • 3 Legaspi A, Jeevanandam M, Starnes Jr H F, Brennan M F. Whole body lipid and energy metabolism in the cancer patient.  Metabolism. 1987;  36 958-963
  • 4 Reaven G M, Hollenback C, Jeng C, Wu M S, Chen Y I. Measurement of plasma glucose free fatty acid, lactate and insulin for 24 h in patients with NIDDM.  Diabetes. 1988;  37 1020-1024
  • 5 Spector A A. Fatty acid binding to plasma albumin.  J Lipid Res. 1975;  16 165-179
  • 6 Richieri G V, Anel A, Kleinfeld A M. Interactions of long chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB.  Biochemistry. 1993;  32 7574-7580
  • 7 Kleinfeld A M, Prothro D, Brown D, David R C, Richieri G V, DeMaria A. Increases in serum unbound free fatty acids following coronary angioplasty.  Am J Cardiology. 1996;  78 1350-1354
  • 8 Richieri G V, Ogata R T, Kleinfeld A M. A fluorescently labeled intestinal fatty acid binding protein: interactions with fatty acids and its use in monitoring free fatty acids.  J Biol Chem. 1992;  267 23495-23501
  • 9 Richieri G V, Kleinfeld A M. Unbound free fatty acid levels in human serum.  J Lipid Res. 1995;  36 229-240
  • 10 Richieri G V, Ogata R T, Kleinfeld A M. Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine.  J Biol Chem. 1996;  271 11291-11300
  • 11 Kamihara S, Yokota M, Iwase M et al.. Early detection of myocardial ischemia by myocardial free fatty acid extraction of patients with exercise-induced angina pectoris.  Am J Cardiol. 1989;  64 180-185
  • 12 Prinzen F W, VanDerVusse G J, Arts T, Roemen T HM, Coumans W A, Reneman R S. Accumulation of nonesterified fatty acids in ischemic canine myocardium.  Am J Physiol. 1984;  H264-H271
  • 13 Thomassen A, Bager J P, Nielsen T T, Hennigsen P. Altered global myocardial substrate preference at rest and during pacing in coronary artery disease with stable angina pectoris.  Am J Cardiol. 1988;  62 686-693
  • 14 Schelbert H R, Buxton D. Insights into coronary artery disease gained from metabolic imaging.  Circ Res. 1998;  62 686-693
  • 15 Nielsen T T, Bagger J P, Thomassen A. Improved myocardial lactate extraction after propranolol in coronary artery disease: effected by peripheral glutamate and free fatty acid metabolism.  Br Heart J. 1986;  55 140-147
  • 16 National Institutes of Health . Antenatal diagnosis: report of a consensus conference.  NIH publication. 1979;  79 1973
  • 17 Shy K K, Larson E B, Luthy D A. Evaluating a new technology: the effectiveness of electronic fetal heart rate monitoring.  Ann Rev Public Health. 1987;  8 165-190
  • 18 MacDonald D, Grant A, Sheridan-Pereira M, Boylan P, Chalmers I. The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring.  Am J Obstet Gynecol. 1985;  152 425-539
  • 19 Winkler C L, Hauth J C, Tucker M et al.. Neonatal complications at term as related to the degree of umbilical arterial acidemia.  Am J Obstet Gynecol. 1991;  164 637
  • 20 Fee S C, Malee K, Deddish R et al.. Severe acidosis and subsequent neurological status.  Am J Obstet Gynecol. 1990;  162 802-806
  • 21 Gilstrap III L C, Leveno K L, Burris J et al.. Diagnosis of birth asphyxia on the basis of fetal pH, Apgar score, and newborn cerebral dysfunction.  Am J Obstet Gynecol. 1989;  161 825-830
  • 22 Ruth V J, Raivia K O. Perinatal brain damage: predictive value of metabolic acidosis and the Apgar score.  Br Med J. 1988;  297 24-27
  • 23 Dennis J, Johnson A, Mutch L et al.. Acid base status at birth and neurodevelopment at four and one half years.  Am J Obstet Gynecol. 1989;  161 213-220
  • 24 Silverman F, Suidan J, Wasserman J et al.. The Apgar score: is it enough?.  Obstet Gynecol. 1985;  66 331-336
  • 25 Niswander K R. EFM and brain damage in term and post term infants.  Contemp Obsteth Gynecol. 1991;  36 39-42
  • 26 Portman R J, Carter B S, Gaylord M S et al.. Predicting neonatal morbidity after perinatal asphyxia: a scoring system.  Am J Obstet Gynecol. 1990;  162 174-182
  • 27 Marrin M, Paes B A. Birth asphyxia: does the Apgar score have diagnostic value?.  Obstet Gynecol. 1988;  72 120-123
  • 28 Sykes G S, Johnson E, Ashworth F. Do Apgar scores indicate asphyxia?.  Lancet. 1982;  1 494-496
  • 29 Jain L, Ferre C, Vidyasagar D et al.. Cardiopulmonary resuscitation of apparently stillborn infants: survival and long-term outcome.  J Pediatr. 1991;  118 778-782
  • 30 Nelson K B, Ellenberg J H. Antecedents of cerebral palsy: multivariate analysis of risk.  N Eng J Med. 1986;  315 81-86
  • 31 Patel M N, Kleinfeld A M, Richieri G V, Ruben S, Hiatt M, Hegyi T. Measurements of plasma concentrations of unbound free fatty acids in newborn infants.  J Am Coll Nutr. 1997;  16 81-84
  • 32 Kurien V A, Oliver M F. Serum-free-fatty acids after acute myocardial infarction and cerebral vascular occlusion.  Lancet. 1996;  16 122-124
  • 33 Oliver M F, Opie L H. Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias.  Lancet. 1994;  343 155-158
  • 34 Kleinfeld A M, Prothro D, Brown D, Davis R C, Richieri G V, DeMaria A. Increases in serum unbound free fatty acid levels following coronary angioplasty.  Am J Cardiol. 1996;  78 1350-1354
  • 35 ACOG Committee Opinion #303: inappropriate use of the terms fetal distress and birth asphyxia.  Obstet Gynecol. 2004;  104 903

Thomas HegyiM.D. 

Division of Neonatology, Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Robert Wood Johnson University Hospital

1 Robert Wood Johnson Place, MEB 312C, New Brunswick, NJ 08903

    >