Subscribe to RSS
DOI: 10.1055/s-2005-918459
Total Synthesis of Japanese Hop Ether Using an Efficient Intramolecular Pauson-Khand Reaction
Publication History
Publication Date:
14 November 2005 (online)
Abstract
The naturally occurring monoterpene Japanese Hop Ether has been synthesised in 14 steps in an overall yield of 29%. The key step of the synthesis, an intramolecular Pauson-Khand reaction, has been shown to proceed in good to excellent yield under mild N-oxide promotion conditions and with complete retention of alkene stereochemistry (for both cis- and trans-alkenes) in the product cyclopentenone.
Key words
amine N-oxides - cyclopentenones - natural products - Pauson-Khand cyclizations - stereoselectivity
- 1
Naya Y.Kotake M. Tetrahedron Lett. 1968, 1645 - 2
Tressel R.Friese L.Fendesack F.Koeppler H. J. Agric. Food Chem. 1978, 26: 1426 -
3a
Peacock VE.Deinzer ML. J. Am. Soc. Brew. Chem. 1981, 39: 136 -
3b
Tressel R.Friese L.Fendesack F.Koeppler H. J. Agric. Food Chem. 1978, 26: 1422 -
3c
Peppard TL.Ramus SA.Witt CA.Siebert KJ. J. Am. Soc. Brew. Chem. 1989, 47: 18 -
3d
Graves IR.Brier MB.Chandra GS.Alspach PA. Proceedings of the 27th Convention, Institute of Brewing (Asia Pacific Section) 2002, 10 ; Chem. Abstr. 2003, 138, 168942a -
3e See also:
Lam KC.Deinzer ML. J. Am. Soc. Brew. Chem. 1986, 44: 69 - 4
Imagawa T.Murai N.Akiyama T.Kawanishi M. Tetrahedron Lett. 1979, 1691 -
5a
Johnson CR.Elliot RC.Meanwell NA. Tetrahedron Lett. 1982, 23: 5005 -
5b
Billington DC.Kerr WJ.Pauson PL. J. Organomet. Chem. 1987, 328: 223 -
5c
Linderman RJ.Godfrey A. J. Am. Chem. Soc. 1988, 110: 6249 -
5d
Tanimori S.Nakayama M. Agric. Biol. Chem. 1990, 54: 1875 -
5e
Veselovsky VV.Moiseenkov AM. Russ. Chem. Bull. 1993, 42: 102 - For reviews, see:
-
6a
Brummond KM.Kent JL. Tetrahedron 2000, 56: 3263 -
6b
Chung YK. Coord. Chem. Rev. 1999, 188: 297 -
6c
Schore NE. Org. React. (N.Y.) 1991, 40: 1 -
7a
Shambayati S.Crowe WE.Schreiber SL. Tetrahedron Lett. 1990, 31: 5289 -
7b
Jeong N.Chung YK.Lee BY.Lee SH.Yoo S.-E. Synlett 1991, 204 -
7c
Krafft ME.Scott IL.Romero RH.Feibelmann S.Van Pelt CE. J. Am. Chem. Soc. 1993, 115: 7199 -
7d
Gordon AR.Johnstone C.Kerr WJ. Synlett 1995, 1083 - 8
Sugihara T.Yamada M.Yamaguchi M.Nishizawa M. Synlett 1999, 771 -
9a
Ford JG.Kerr WJ.Kirk GG.Lindsay DM.Middlemiss D. Synlett 2000, 1415 -
9b
Billington DC.Helps IM.Pauson PL.Thomson W.Willison D. J. Organomet. Chem. 1988, 354: 233 -
10a
Johnstone C.Kerr WJ.Lange U. J. Chem. Soc., Chem. Commun. 1995, 457 -
10b
Donkervoort JG.Gordon AR.Johnstone C.Kerr WJ.Lange U. Tetrahedron 1996, 52: 7391 -
10c
Clements CJ.Dumoulin D.Hamilton DR.Hudecek M.Kerr WJ.Kiefer M.Moran P. H.Pauson PL. J. Chem. Res., Synop. 1998, 636; J. Chem. Res., Miniprint 1998, 2658 -
10d
Kerr WJ.McLaughlin M.Pauson PL.Robertson SM. J. Organomet. Chem. 2001, 630: 104 -
10e
Kerr WJ.McLaughlin M.Pauson PL. J. Organomet. Chem. 2001, 630: 118 -
10f
Kerr WJ.McLaughlin M.Morrison AJ.Pauson PL. Org. Lett. 2001, 3: 2945 -
10g
Kennedy AR.Kerr WJ.McLaughlin M.Pauson PL. Acta Crystallogr., Sect. C 2001, 57: 1316 -
11a
Krafft ME. J. Am. Chem. Soc. 1988, 110: 968 -
11b
Krafft ME.Scott IL.Romero RH. Tetrahedron Lett. 1992, 33: 3829 -
11c
Krafft ME.Juliano CA.Scott IL.Wright C.McEachin MD. J. Am. Chem. Soc. 1991, 113: 1693 -
12a
Kerr WJ.Lindsay DM.Rankin EM.Scott JS.Watson SP. Tetrahedron Lett. 2000, 41: 3229 -
12b
Carbery DR.Kerr WJ.Lindsay DM.Scott JS.Watson SP. Tetrahedron Lett. 2000, 41: 3235 -
12c
Kennedy AR.Kerr WJ.Lindsay DM.Scott JS.Watson SP. J. Chem. Soc., Perkin Trans. 1 2000, 4366 -
12d
Kerr WJ.Kirk GG.Middlemiss D. Synlett 1995, 1085 -
14a
Barton DHR.McCombie SW. J. Chem. Soc., Perkin Trans. 1 1975, 1574 -
14b
Hartwig W. Tetrahedron 1983, 39: 2609 - 15
Sharpless KB.Young MW. J. Org. Chem. 1975, 40: 947 - 16
Grieco PA.Gilman S.Nishizawa M. J. Org. Chem. 1976, 41: 1485
References
The identity of each cyclopentenone product was initially elucidated by 1H NMR. In particular, the non-olefinic proton α to the carbonyl in product 19 (from E-enyne 18), would be in an endo-position and, hence, would be more shielded; this proton appears as a multiplet at δ = 2.42-2.47 ppm. The equivalent non-olefinic proton α to the carbonyl in product 6 (from Z-enyne 7), would be in an exo-position and, hence, would be more deshielded; this proton appears as a multiplet at δ = 2.90-2.97 ppm.