References
General reviews:
<A NAME="RG21905ST-1A">1a </A>
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
<A NAME="RG21905ST-1B">1b </A>
Zeni G.
Larock RC.
Chem. Rev.
2004,
104:
2285
<A NAME="RG21905ST-1C">1c </A>
Alonso F.
Beletskaya IP.
Yus M.
Chem. Rev.
2004,
104:
3079
In this letter we do not refer to the addition/cyclization of alcohols or acids on
alkynes which has been also extensively studied. Some insight of this work can be
found in some recent publications. For alcohols and phenols see:
<A NAME="RG21905ST-1D">1d </A>
Antoniotti S.
Genin E.
Michelet V.
Genêt J.-P.
J. Am. Chem. Soc.
2005,
127:
9976
<A NAME="RG21905ST-1E">1e </A>
Trost BM.
Rhee YH.
J. Am. Chem. Soc.
2003,
125:
7482
<A NAME="RG21905ST-1F">1f </A>
Gabriele B.
Salerno G.
Fazio A.
Pittelli R.
Tetrahedron
2003,
59:
6251
<A NAME="RG21905ST-1G">1g </A>
Droz AS.
Neidlein U.
Anderson S.
Seiler P.
Diederich F.
Helv. Chim. Acta
2001,
84:
2243
<A NAME="RG21905ST-1H">1h </A>
Hiroya K.
Jouka R.
Kameda M.
Yasuhara A.
Sakamoto T.
Tetrahedron
2001,
57:
9697
<A NAME="RG21905ST-1I">1i </A>
McDonald FE.
Chem.-Eur. J.
1999,
5:
3103
<A NAME="RG21905ST-1J">1j </A>
Teles JH.
Brode S.
Chabanas M.
Angew. Chem. Int. Ed.
1998,
37:
1415
<A NAME="RG21905ST-1K">1k </A>
Weingarten MD.
Padwa A.
Tetrahedron Lett.
1995,
36:
4717
<A NAME="RG21905ST-1L">1l </A>
Villemin D.
Goussu D.
Heterocycles
1989,
29:
1255
<A NAME="RG21905ST-1M">1m </A> For acids see:
Subramanian V.
Batchu VR.
Barange D.
Pal M.
J. Org. Chem.
2005,
70:
4778
<A NAME="RG21905ST-1N">1n </A> Review:
Balme G.
Bouyssi D.
Lomberget T.
Monteiro N.
Synthesis
2003,
2115
<A NAME="RG21905ST-1O">1o </A>
Bellina F.
Ciucci D.
Vergamini P.
Rossi R.
Tetrahedron
2000,
56:
2533
<A NAME="RG21905ST-1P">1p </A>
Ogawa Y.
Maruno M.
Wakamatsu T.
Heterocycles
1995,
41:
2587
<A NAME="RG21905ST-2">2 </A>
Barluenga J.
Vàsquez-Villa H.
Ballesteros A.
Gonzalèz JM.
J. Am. Chem. Soc.
2003,
125:
9028
<A NAME="RG21905ST-3">3 </A>
Yue D.
Cà ND.
Larock RC.
Org. Lett.
2004,
6:
1581
<A NAME="RG21905ST-4A">4a </A>
Wei L.-L.
Wei L.-M.
Pan W.-B.
Wu M.-J.
Synlett
2004,
1497
<A NAME="RG21905ST-4B">4b </A>
Mondal S.
Nogami T.
Asao N.
Yamamoto Y.
J. Org. Chem.
2003,
68:
9496
<A NAME="RG21905ST-4C">4c </A>
Guliàs M.
Rodrìguez JR.
Castedo L.
Mascareñas JL.
Org. Lett.
2003,
5:
1975
<A NAME="RG21905ST-5">5 </A>
Patil NT.
Yamamoto Y.
J. Org. Chem.
2004,
69:
5139
<A NAME="RG21905ST-6A">6a </A>
Asao N.
Aikama H.
Yamamoto Y.
J. Am. Chem. Soc.
2004,
126:
7458
<A NAME="RG21905ST-6B">6b </A>
Dyker G.
Hildebrandt D.
Liu J.
Merz K.
Angew. Chem. Int. Ed.
2003,
42:
4399
<A NAME="RG21905ST-6C">6c </A>
Asao N.
Takahashi K.
Lee S.
Kasahara T.
Yamamoto Y.
J. Am. Chem. Soc.
2002,
124:
12650
<A NAME="RG21905ST-7">7 </A>
Nishiwaki N.
Minakata S.
Komatsu M.
Ohshiro Y.
Synlett
1990,
273
For recent work focusing on indoles derivatives, see:
<A NAME="RG21905ST-8A">8a </A>
Barluenga J.
Vàsquez-Villa H.
Ballesteros A.
Gonzalèz JM.
Adv. Synth. Catal.
2005,
347:
526
<A NAME="RG21905ST-8B">8b </A> Related cyclization via imine intermediates:
Abbiati G.
Arcadi A.
Bellinazzi A.
Beccalli E.
Rossi E.
Zanzola S.
J. Org. Chem.
2005,
70:
4088
<A NAME="RG21905ST-9">9 </A>
Belmont P.
Andrez J.-C.
Allan CSM.
Tetrahedron Lett.
2004,
45:
2783
<A NAME="RG21905ST-10A">10a </A>
Patin A.
Belmont P.
Synthesis
2005,
2400
<A NAME="RG21905ST-10B">10b </A>
Belmont P.
Belhadj T.
Org. Lett.
2005,
7:
1793
For alternative procedures with base-promoted intramolecular addition reactions of
nucleophiles (alcohol and nitrogen) to an unactivated triple bond, see:
<A NAME="RG21905ST-11A">11a </A>
Padwa A.
Krumpe KE.
Weingarten MD.
J. Org. Chem.
1995,
60:
5595
<A NAME="RG21905ST-11B">11b </A>
Abbiati G.
Arcadi A.
Beccalli E.
Rossi E.
Tetrahedron Lett.
2003,
44:
5331
<A NAME="RG21905ST-11C">11c </A>
Kaloko J.
Hayford A.
Org. Lett.
2005,
7:
4305 ; (published during our paper refereeing) and references 1g, 1h, 1k
<A NAME="RG21905ST-12">12 </A>
The exo -methylene J (CH2 ) coupling constant was in accordance with geminal coupling value, i.e. 2.3 Hz and
in the 13 C NMR DEPT experiments, a signal was found for the exo -methylene CH2 carbon center which could not exist in a 6-endo -dig product (Scheme
[4 ]
).
Scheme 4
<A NAME="RG21905ST-13A">13a </A>
Michael JP.
Nat. Prod. Rep.
2004,
21:
650
<A NAME="RG21905ST-13B">13b </A>
Michael JP.
Nat. Prod. Rep.
2003,
20:
476
<A NAME="RG21905ST-13C">13c </A>
Michael JP.
Nat. Prod. Rep.
2002,
19:
742
<A NAME="RG21905ST-14">14 </A>
The 3-D structure was confirmed by comparison with the NMR data from the non-deuterated derivative
3 . The silyl species D3 C-OSi(CH3 )3 was also identified by 1 H NMR from a sample of commercially available H3 C-OSi(CH3 )3 , in CD3 OD.
<A NAME="RG21905ST-15">15 </A>
Refer to publication 10a for general procedure.
<A NAME="RG21905ST-16">16 </A> These compounds were isolated as a unique diastereomer, presumably cis , but this is not yet confirmed by NMR experiments
<A NAME="RG21905ST-17">17 </A>
Column chromatography was performed on silica gel (mixture of cyclohexane-EtOAc) adding
0.6% of Et3 N. If care is not taken during purification, we have observed for compounds derived
from aldehyde 1 , the formation of a quinoline bearing an aldehyde function in position 3 and a methyl
ketone in position 2 (see Scheme
[5 ]
below). This compound results from the hydrolysis of the hemiacetal. The presence
of the methyl ketone confirms the formation of a 5-exo -dig product in all cases since a 6-endo -dig cyclization would have produced the formation of a quinoline bearing two aldehyde
groups.
Scheme 5
<A NAME="RG21905ST-18">18 </A>
Typical Experimental Conditions for the Cyclization.
To a 0.1 M solution of alkynyl-quinoline in the appropriate solvent was added 0.05
equiv of anhyd K2 CO3 . The mixture was stirred overnight at r.t. The crude was purified by flash chromatography
on silica gel, eluting with an appropriate mixture of cyclohexane-EtOAc with 0.6%
of Et3 N. Typical analytical data are given for compound 5 (Entry 2, Table 2): Yield: 99%; yellow oil. R
f
= 0.3 (cyclohexane-EtOAc, 9:1)
1 H NMR (300 MHz, CDCl3 ): δ = 8.19 (s, 1 H), 8.15 (d, J = 8.3 Hz, 1 H), 7.86 (dd, J = 8.3, 1.1 Hz, 1 H), 7.75 (td, J = 7.2, 1.5 Hz, 1 H), 7.53 (td, J = 7.9, 1.1 Hz, 1 H), 6.53 (s, 1 H), 5.79 (d, J = 2.3 Hz, 1 H), 5.35 (d, J = 2.3 Hz, 1 H), 3.80 (m, 2 H), 1.65 (m, 2 H), 1.41 (m, 2 H), (s, J = 5.3 Hz, 2 H), 0.94 (t, J = 7.2 Hz, 3 H).
13 C NMR (75 MHz, CDCl3 ): δ = 157.1 (C), 153.6 (C), 149.9 (C), 131.4 (CH), 130.5 (CH), 129.6 (CH), 129.5
(C), 128.4 (CH), 127.8 (C), 126.9 (CH), 103.6 (CH), 83.9 (CH2 ), 68.2 (CH2 ), 31.7 (CH2 ), 30.1 (CH2 ), 13.8 (CH3 ). MS: m /z = 256 (MH+ ).