Subscribe to RSS
DOI: 10.1055/s-2005-918956
Synthetic Studies in Phytochrome Chemistry
Publication History
Publication Date:
27 October 2005 (online)
Abstract
An account is given of the author’s several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both (2R)- and (2S)-phytochromobilin (4), as well as several 13C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1.
1 Introduction and Background
2 Early Interests
3 The Azomethine Imine Strategy to Rings A and B:
A Saxitoxin Connection
4 The Sigmatropic Rearrangement Strategy: First Success
5 Regrouping with Pd Chemistry
6 Constructing the C,D-Ring Pyrromethenone of Phytochrome
7 Instability Issues: The ‘BC + D + A’ Strategy
8 Enantioselective Syntheses of (R)- and (S)-Phytochromobilin
9 Probing the Site of Pr Photoisomerization
Key words
phytochrome - pyrroles - lactams - alkynes - palladium
- For reviews on the chemistry and biology of phytochrome, see:
-
1a
Statter RL.Galston AW. In Chemistry and Biochemistry of Plant Pigments Vol. 1:Goodwin TW. Academic Press; New York: 1976. p.680 -
1b
Kendrick RE.Spruit CJP. Photochem. Photobiol. 1977, 26: 201 -
1c
Pratt LH. Photochem. Photobiol. 1978, 27: 81 -
1d
Phytochrome and Photoregulation in Plants
Furuya M. Academic Press; New York: 1987. -
1e
Moses PB.Chua N.-H. Sci. Am. 1988, 258: 88 -
1f
Rüdiger W.Thümmler F. Angew. Chem., Int. Ed. Engl. 1991, 30: 1216 -
1g
Rüdiger W. Photochem. Photobiol. 1992, 56: 803 -
1h
Terry MJ.Wahleithner JA.Lagarias JC. Arch. Biochem. Biophys. 1993, 306: 1 -
1i
Song P.-S. The Spectrum (Bowling Green State University) 1994, 7: 1 -
1j
Montgomery BL.Lagarias JC. Trends Plant Sci. 2002, 7: 357 ; and cited references - For leading references to phycocyanin, phycoerythrin and other biliproteins see:
-
2a
Scheer H. Angew. Chem., Int. Ed. Engl. 1981, 20: 241 ; Angew. Chem. 1981, 93, 230 -
2b
Glazer AN. In The Biochemistry of Plants Vol. 8:Hatch MD.Boardman NK. Academic Press; New York: 1981. p.51 -
2c
Bonnett R. Tetrahedron 1983, 39: 1839 -
2d
Falk H. The Chemistry of Linear Oligopyrroles and Bile Pigments Springer-Verlag; Vienna, New York: 1989. -
3a
Lagarias JC.Glazer AN.Rapoport H. J. Am. Chem. Soc. 1979, 101: 5030 -
3b
Lagarias JC.Rapoport H. J. Am. Chem. Soc. 1980, 102: 4821 -
3c
Schoenleber RW.Leung S.-L.Lundell DJ.Glazer AN.Rapoport H. J. Am. Chem. Soc. 1983, 105: 4072 -
3d
Schoenleber RW.Kim Y.Rapoport H. J. Am. Chem. Soc. 1984, 106: 2645 -
4a
Butler WL.Norris KH.Siegelman HW.Hendricks SB. Proc. Natl. Acad. Sci. U.S.A. 1959, 45: 1703 - See also:
-
4b
Rüdiger W. Struct. Bond. 1980, 40: 101 -
4c
Thümmler F.Rüdiger W. Tetrahedron 1983, 39: 1943 -
4d
Rüdiger W.Thümmler F.Cmiel E.Schneider S. Proc. Natl. Acad. Sci. U.S.A. 1983, 80: 6244 -
4e
Fodor SPA.Lagarias JC.Mathies RA. Photochem. Photobiol. 1988, 48: 129 -
4f
Farrens DL.Holt RE.Rospendowski BN.Song P.-S.Cotton TM. J. Am. Chem. Soc. 1989, 111: 9162 -
4g
Fodor SPA.Lagarias JC.Mathies RA. Biochemistry 1990, 29: 11141 -
5a
Grombein S.Rüdiger W.Zimmermann H. Hoppe-Seyler’s Z. Physiol. Chem. 1975, 356: 1709 -
5b
Andel F.Murphy JT.Haas JA.McDowell MT.van der Hoef I.Lugtenburg J.Lagarias JC.Mathies RA. Biochemistry 2000, 39: 2667 ; and cited references -
5c
Andel F.Lagarias JC.Mathies RA. Biochemistry 1996, 35: 15997 ; and cited references - Representative recent papers:
-
5d
Strauss HM.Hughes J.Schmieder P. Biochemistry 2005, 44: 8244 -
5e
Esteban B.Carrascal M.Abian J.Lamparter T. Biochemistry 2005, 44: 450 -
5f
Mroginski MA.Murgida DH.von Stetten D.Kneip C.Mark F.Hildebrandt P. J. Am. Chem. Soc. 2004, 126: 16734 -
5g
Kneip C.Hildebrandt P.Schlamann W.Braslavsky SE.Mark F.Schaffner K. Biochemistry 1999, 38: 15185 -
5h Recently, Inomata et al. published studies with sterically locked synthetic bilin derivatives that support the transformation shown in Figure 3 (i.e. 15Z-anti → 15E-anti):
Inomata K.Hammam MAS.Kinoshita H.Murata Y.Khawn H.Noack S.Michael N.Lamparter T. J. Biol. Chem. 2005, 280: 24491 - 6
Siegelman HW.Turner BC.Hendricks SB. Plant. Physiol. 1966, 41: 1289 - 7
Rüdiger W.Correll DL. Justus Liebigs Ann. Chem. 1969, 723: 208 - 8
Gossauer A.Weller J.-P. Chem. Ber. 1980, 113: 1603 - 9
Fry KT.Mumford FE. Biochem. Biophys. Res. Commun. 1971, 45: 1466 -
10a
Klein G.Grombein S.Rüdiger W. Z. Physiol. Chem. 1977, 358: 1077 -
10b See also:
Klein G.Rüdiger W. Justus Liebigs Ann. Chem. 1978, 267 -
11a
Jacobi PA.Martinelli M.Polanc S. J. Am. Chem. Soc. 1984, 106: 559 - See also:
-
11b
Jacobi PA.Brownstein A.Martinelli M.Grozinger K. J. Am. Chem. Soc. 1981, 103: 239 -
11c
Martinelli MJ.Brownstein AD.Jacobi PA.Polanc S. Croat. Chem. Acta 1986, 59: 267 -
11d
The Total Synthesis of Saxitoxin, In Strategies and Tactics in Organic Synthesis
Vol. 2:
Lindberg T. Academic Press, Inc.; New York: 1989. -
12a
Schreiber SL.Sammakia T.Crowe WE. J. Am. Chem. Soc. 1986, 108: 3128 -
12b
Schreiber SL.Klimas MT.Sammakia T. J. Am. Chem. Soc. 1987, 109: 5749 ; first described at the national meeting of the American Chemical Society, April, 1986, in New York City -
13a
Lockwood RF.Nicholas KM. Tetrahedron Lett. 1977, 18: 4163 -
13b
Nicholas KM.Nestle MO.Deyferth D. Transition Metal OrganometallicsAlper H. Academic Press; New York: 1978. -
14a
Huisgen R.Grashey R.Laur P.Leitermann H. Angew. Chem. 1960, 72: 416 -
14b
For a summary of the most common methods of azomethine imine generation, see ref. 11d.
- 15
Odeh IMA. PhD Thesis Wesleyan University; USA: 1984. - 16
Patterson JM.Ferry JD.Boyd MR. J. Am. Chem. Soc. 1973, 95: 4356 - 17
Buddhu SC. PhD Thesis Wesleyan University; USA: 1988. - See, for example:
-
18a
Zimmerman H.Flitsch W.Kramer V. Chem. Ber. 1969, 102: 3268 -
18b
Kakushima M.Hamel P.Frenette R.Rokach J. J. Org. Chem. 1983, 48: 3214 -
19a
Jacobi PA.Buddhu S. Tetrahedron Lett. 1988, 4823 -
19b
Jacobi PA.Cai G. Tetrahedron Lett. 1991, 32: 1765 -
19c
Jacobi PA.Rajeswari S. Tetrahedron Lett. 1992, 33: 6231 -
19d
Jacobi PA.Rajeswari S. Tetrahedron Lett. 1992, 33: 6235 -
19e
Jacobi PA.DeSimone RW. Tetrahedron Lett. 1992, 33: 6239 -
19f
Jacobi PA.Cai G. Heterocycles 1993, 35: 1103 -
19g
Jacobi PA.Brielmann HL.Hauck SI. Tetrahedron Lett. 1995, 36: 1193 -
19h
Jacobi PA.Guo J.Zheng W. Tetrahedron Lett. 1995, 36: 1197 -
19i
Jacobi PA.Guo J. Tetrahedron Lett. 1995, 36: 2717 -
19j
Jacobi PA.Brielmann HL.Hauck SI. J. Org. Chem. 1996, 61: 5013 -
19k
Jacobi PA.Guo J.Hauck SI.Leung SH. Tetrahedron Lett. 1996, 37: 6069 -
19l
Jacobi PA.Buddhu SC.Fry D.Rajeswari S. J. Org. Chem. 1997, 62: 2894 -
19m
Jacobi PA.Guo J.Rajeswari S.Zheng W. J. Org. Chem. 1997, 62: 2907 -
19n
Jacobi PA.Coutts LD.Guo J.Hauck SI.Leung S. J. Org. Chem. 2000, 65: 205 -
19o
Jacobi PA.DeSimone RW.Ghosh I.Guo J.Leung SH.Pippin D. J. Org. Chem. 2000, 65: 8478 -
19p
Jacobi PA.Pippin D. Org. Lett. 2001, 3: 827 -
20a
Hammond GS.Turro NJ.Leermakers PA. J. Phys. Chem. 1962, 66: 1144 -
20b
Yang NC.Hui MH.Shold DM.Turro NJ.Hautala RR.Dawes K.Dalton JC. J. Am. Chem. Soc. 1977, 99: 3023 -
22a
Boger DL.Robarge KD. J. Org. Chem. 1988, 53: 3373 -
22b
Boger DL.Robarge KD. J. Org. Chem. 1988, 53: 5793 ; and references cited therein - See also:
-
22c
Boger DL.Corbett WL.Wiggins JM. J. Org. Chem. 1990, 55: 2999 -
22d
Tietze LF.Hartfiel U. Tetrahedron Lett. 1990, 31: 1697 ; and references cited therein - 23
Evans DA.Britton TC.Ellman JA. Tetrahedron Lett. 1987, 28: 6141 - 24
Rudisill DE.Stille JK. J. Org. Chem. 1989, 54: 5856 -
26a
Pless J. J. Org. Chem. 1974, 39: 2644 -
26b
Clark JH. Chem. Rev. 1980, 80: 429 -
26c
Morrison H. J. Am. Chem. Soc. 1965, 87: 932 -
27a
Sharma RK.Fry JL. J. Org. Chem. 1983, 48: 2112 -
27b
Clark JH. Chem. Rev. 1980, 80: 429 -
27c
See also ref. 26a.
- 28
Volante RP. Tetrahedron Lett. 1981, 22: 3119 ; and references cited therein - 29
Takai K.Heathcock CH. J. Org. Chem. 1985, 50: 3247 ; and references cited therein - 30
Morrison H. J. Am. Chem. Soc. 1965, 87: 932 -
31a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467 - For related methodology, see:
-
31b
Cassar L. J. Organomet. Chem. 1975, 93: 253 -
31c
Dieck HA.Heck FR. J. Organomet. Chem. 1975, 93: 259 -
31d
Stephans RD.Castro CE. J. Org. Chem. 1963, 28: 3313 -
32a
Vasilevskii SF.Sundukova TA.Shvartsberg MS.Kotylarevskii IL. Bull. Acad. Sci. USSR, Div. Chim. Sci. 1979, 1536 ; Chem. Abstr. 1979, 91, 157544g -
32b
Vasilevskii SF.Sundukova TA.Shvartsberg MS.Kotylarevskii IL. Bull. Acad. Sci. USSR, Div. Chim. Sci. 1980, 1871 ; Chem. Abstr. 1981, 94, 30464n -
32c
Alvarez A.Guzman A.Ruiz A.Velarde E.Muchowski JM. J. Org. Chem. 1992, 57: 1653 -
32d See also:
Chen W. PhD Thesis University of Alabama; Tuscaloosa USA: 1990. - 33
Barton DHR.Kervagoret J.Zard SZ. Tetrahedron 1990, 46: 7587 - 34 A similar effect has been described by Magnus et al.:
Magnus P.Carter P.Elliott J.Lewis R.Harling J.Pitterna T.Bauta WE.Fortt S. J. Am. Chem. Soc. 1992, 114: 2544 -
35a
Sharma RK.Fry JL. J. Org. Chem. 1983, 48: 2112 -
35b
Pless J. J. Org. Chem. 1974, 39: 2644 -
35c
Clark JH. Chem. Rev. 1980, 80: 429 -
36a
Jacobi PA.Zheng W. Tetrahedron Lett. 1993, 34: 2581 -
36b
Jacobi PA.Zheng W. Tetrahedron Lett. 1993, 34: 2585 - 37 Cleavage of benzyl ethers with P4S10 does not appear to be a general reaction, but this reagent works well with carboxylic acids where intramolecular participation is possible. Postulated mechanism:
Jacobi PA.Herradura P. Tetrahedron Lett. 1997, 38: 6621 -
38a
Rollin P. Tetrahedron Lett. 1986, 27: 4169 -
38b
Rollin P. Synth. Commun. 1986, 16: 611 -
39a
Bishop JE.Nagy JO.O’Connell JF.Rapoport H. J. Am. Chem. Soc. 1991, 113: 8024 -
39b
Bishop JE.Dagam SA.Rapoport H. J. Org. Chem. 1989, 54: 1876 - 40
Gossauer A.Miehe D. Justus Liebigs Ann. Chem. 1974, 352 - 41
Takashi K.Kinoshita H.Inomata K. Synlett 1999, 901 -
42a
Dowd P.Kennedy P. Synth. Commun. 1981, 11: 935 ; and references cited therein - See also:
-
42b
Liotta D.Santiesteban H. Tetrahedron Lett. 1977, 18: 4369 -
42c
Scarborough RM.Smith AB. Tetrahedron Lett. 1977, 18: 4361 -
44a
Scheuplein SW.Harms K.Brückner R.Suffert J. Chem. Ber. 1992, 125: 271 -
44b See also:
Nakatani K.Arai K.Yamada K.Terashima S. Tetrahedron Lett. 1991, 32: 3405 -
45a
Corriu RJP.Perz R. Tetrahedron Lett. 1985, 26: 1311 -
45b The active catalyst in this system is postulated to be a pentacoordinated silicon-ate complex formed by nucleophilic attack of F- on Si(OMe)4. See also:
Ahn KH.Lee SJ. Tetrahedron Lett. 1994, 35: 1875 -
47a
Bishop JE.O’Connell JF.Rapoport H. J. Org. Chem. 1991, 56: 5079 -
47b
Johnson AW.Markham E.Price R.Shaw KB. J. Chem. Soc. 1959, 3416 -
47c
Beckmann S.Wessel T.Franck B.Hönle W.Borrmann H.von Schnering H.-G. Angew. Chem., Int. Ed. Engl. 1990, 29: 1393 -
47d
Mironov AF.Ovsepyran TR.Evstigneeva RP.Preobrazhenskii NA. Zh. Obshch. Khim. 1965, 35: 324 - 49
Ho T.-L. Tetrahedron 1985, 41: 1 -
50a
Jacobi PA.Liu H. J. Am. Chem. Soc. 1999, 121: 1958 -
50b
Jacobi PA.Liu H. J. Org. Chem. 1999, 64: 1778 -
50c
Jacobi PA.Liu H. Org. Lett. 1999, 1: 341 -
53a
Elich TD.Lagarias JC. J. Biol. Chem. 1989, 264: 12902 -
53b
Lagarias JC.Lagarias DM. Proc. Natl. Acad. Sci. U.S.A. 1989, 86: 5778 -
53c
Deforce L.Tomizawa K.-I.Ito N.Farrens D.Song P.-S.Furuya M. Proc. Natl. Acad. Sci. U.S.A. 1991, 88: 10392 -
53d
Li L.Lagarias JC. J. Biol. Chem. 1992, 267: 19204 -
54a
Arciero DM.Bryant DA.Glazer AN. J. Biol. Chem. 1988, 263: 18343 -
54b
Arciero DM.Dallas JL.Glazer AN. J. Biol. Chem. 1988, 263: 18350 - 55
Wahleithner JA.Li L.Lagarias JC. Proc. Natl. Acad. Sci. U.S.A. 1991, 88: 10387 - For leading references see:
-
56a
Takashi K.Kinoshita H.Inomata K. Synlett 1999, 901 -
56b
Lindner I.Knipp B.Braslavsky SE.Gärtner W.Schaffer K. Angew. Chem. Int. Ed. 1998, 37: 1843 -
56c
Jayasundera KP.Kinoshita H.Inomata K. Chem. Lett. 1998, 1227 - 58
Biological Applications of Raman Spectroscopy
Spiro TG. Wiley-Interscience; New York: 1987. - 59
Palings I. Biochemistry 1989, 28: 1498
References
The structure of dihydropyrromethenone 63b (E-isomer, R = CO2Me) and alkyne acid 88c were unequivocally established by single crystal X-ray analysis performed by Ms Gayle Schulte, Yale University.
25As expected, enamides 82 exhibited atropisomerism due to hindered N-N bond rotation, although each isomer had identical photochemical behavior.
43We are grateful to Professor Albert Gossauer, of the Université de Fribourg Suisse, for providing us with NMR and IR spectra for 132.
46Manuscript in preparation: O’Neal, W. G.; Roberts, W. P.; Jacobi, P. A. ‘A Practical Synthesis of C,D-Unsymmetrical Chlorins’.
48We are grateful to Dr. Victor G. Young, X-ray Crystallographic Laboratory, Department of Chemistry, University of Minnesota, for carrying out the X-ray analysis of 167b.
51We are grateful to Dr. Hui Liu of this department for carrying out these experiments.
52Sheila graciously made the move to Dartmouth during her last year, and provided invaluable continuity for the project.
57In addition to Professor Lagarias, I am indebted to his associates who carried out these experiments, Dr. Nicole Frankenberg and in particular Ms. Lixia Shang. Professor Lagarias’ research in this area is supported by NIH Grant GM068552, which is gratefully acknowledged.
60Personal communication, Professor Richard A. Mathies, University of California, Berkeley, USA.