Abstract
An account is given of the author’s several approaches to the synthesis of the parent chromophore of phytochrome (1 ), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both (2R )- and (2S )-phytochromobilin (4 ), as well as several 13 C-labeled derivatives designed to probe the site of Z ,E -isomerization during photoexcitation. When reacted in vitro, synthetic 2R -4 and recombinant-derived phytochrome apoprotein N -C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1 .
1 Introduction and Background
2 Early Interests
3 The Azomethine Imine Strategy to Rings A and B: A Saxitoxin Connection
4 The Sigmatropic Rearrangement Strategy: First Success
5 Regrouping with Pd Chemistry
6 Constructing the C,D-Ring Pyrromethenone of Phytochrome
7 Instability Issues: The ‘BC + D + A’ Strategy
8 Enantioselective Syntheses of (R )- and (S )-Phytochromobilin
9 Probing the Site of Pr Photoisomerization
Key words
phytochrome - pyrroles - lactams - alkynes - palladium
References
For reviews on the chemistry and biology of phytochrome, see:
1a
Statter RL.
Galston AW. In
Chemistry and Biochemistry of Plant Pigments
Vol. 1:
Goodwin TW.
Academic Press;
New York:
1976.
p.680
1b
Kendrick RE.
Spruit CJP.
Photochem. Photobiol.
1977,
26:
201
1c
Pratt LH.
Photochem. Photobiol.
1978,
27:
81
1d
Phytochrome and Photoregulation in Plants
Furuya M.
Academic Press;
New York:
1987.
1e
Moses PB.
Chua N.-H.
Sci. Am.
1988,
258:
88
1f
Rüdiger W.
Thümmler F.
Angew. Chem., Int. Ed. Engl.
1991,
30:
1216
1g
Rüdiger W.
Photochem. Photobiol.
1992,
56:
803
1h
Terry MJ.
Wahleithner JA.
Lagarias JC.
Arch. Biochem. Biophys.
1993,
306:
1
1i
Song P.-S.
The Spectrum (Bowling Green State University)
1994,
7:
1
1j
Montgomery BL.
Lagarias JC.
Trends Plant Sci.
2002,
7:
357 ; and cited references
For leading references to phycocyanin, phycoerythrin and other biliproteins see:
2a
Scheer H.
Angew. Chem., Int. Ed. Engl.
1981,
20:
241 ; Angew. Chem. 1981 , 93 , 230
2b
Glazer AN. In
The Biochemistry of Plants
Vol. 8:
Hatch MD.
Boardman NK.
Academic Press;
New York:
1981.
p.51
2c
Bonnett R.
Tetrahedron
1983,
39:
1839
2d
Falk H.
The Chemistry of Linear Oligopyrroles and Bile Pigments
Springer-Verlag;
Vienna, New York:
1989.
3a
Lagarias JC.
Glazer AN.
Rapoport H.
J. Am. Chem. Soc.
1979,
101:
5030
3b
Lagarias JC.
Rapoport H.
J. Am. Chem. Soc.
1980,
102:
4821
3c
Schoenleber RW.
Leung S.-L.
Lundell DJ.
Glazer AN.
Rapoport H.
J. Am. Chem. Soc.
1983,
105:
4072
3d
Schoenleber RW.
Kim Y.
Rapoport H.
J. Am. Chem. Soc.
1984,
106:
2645
4a
Butler WL.
Norris KH.
Siegelman HW.
Hendricks SB.
Proc. Natl. Acad. Sci. U.S.A.
1959,
45:
1703
See also:
4b
Rüdiger W.
Struct. Bond.
1980,
40:
101
4c
Thümmler F.
Rüdiger W.
Tetrahedron
1983,
39:
1943
4d
Rüdiger W.
Thümmler F.
Cmiel E.
Schneider S.
Proc. Natl. Acad. Sci. U.S.A.
1983,
80:
6244
4e
Fodor SPA.
Lagarias JC.
Mathies RA.
Photochem. Photobiol.
1988,
48:
129
4f
Farrens DL.
Holt RE.
Rospendowski BN.
Song P.-S.
Cotton TM.
J. Am. Chem. Soc.
1989,
111:
9162
4g
Fodor SPA.
Lagarias JC.
Mathies RA.
Biochemistry
1990,
29:
11141
5a
Grombein S.
Rüdiger W.
Zimmermann H.
Hoppe-Seyler’s Z. Physiol. Chem.
1975,
356:
1709
5b
Andel F.
Murphy JT.
Haas JA.
McDowell MT.
van der Hoef I.
Lugtenburg J.
Lagarias JC.
Mathies RA.
Biochemistry
2000,
39:
2667 ; and cited references
5c
Andel F.
Lagarias JC.
Mathies RA.
Biochemistry
1996,
35:
15997 ; and cited references
Representative recent papers:
5d
Strauss HM.
Hughes J.
Schmieder P.
Biochemistry
2005,
44:
8244
5e
Esteban B.
Carrascal M.
Abian J.
Lamparter T.
Biochemistry
2005,
44:
450
5f
Mroginski MA.
Murgida DH.
von Stetten D.
Kneip C.
Mark F.
Hildebrandt P.
J. Am. Chem. Soc.
2004,
126:
16734
5g
Kneip C.
Hildebrandt P.
Schlamann W.
Braslavsky SE.
Mark F.
Schaffner K.
Biochemistry
1999,
38:
15185
5h Recently, Inomata et al. published studies with sterically locked synthetic bilin derivatives that support the transformation shown in Figure 3 (i.e. 15Z -anti → 15E-anti ): Inomata K.
Hammam MAS.
Kinoshita H.
Murata Y.
Khawn H.
Noack S.
Michael N.
Lamparter T.
J. Biol. Chem.
2005,
280:
24491
6
Siegelman HW.
Turner BC.
Hendricks SB.
Plant. Physiol.
1966,
41:
1289
7
Rüdiger W.
Correll DL.
Justus Liebigs Ann. Chem.
1969,
723:
208
8
Gossauer A.
Weller J.-P.
Chem. Ber.
1980,
113:
1603
9
Fry KT.
Mumford FE.
Biochem. Biophys. Res. Commun.
1971,
45:
1466
10a
Klein G.
Grombein S.
Rüdiger W.
Z. Physiol. Chem.
1977,
358:
1077
10b See also: Klein G.
Rüdiger W.
Justus Liebigs Ann. Chem.
1978,
267
11a
Jacobi PA.
Martinelli M.
Polanc S.
J. Am. Chem. Soc.
1984,
106:
559
See also:
11b
Jacobi PA.
Brownstein A.
Martinelli M.
Grozinger K.
J. Am. Chem. Soc.
1981,
103:
239
11c
Martinelli MJ.
Brownstein AD.
Jacobi PA.
Polanc S.
Croat. Chem. Acta
1986,
59:
267
11d
The Total Synthesis of Saxitoxin , In Strategies and Tactics in Organic Synthesis
Vol. 2:
Lindberg T.
Academic Press, Inc.;
New York:
1989.
12a
Schreiber SL.
Sammakia T.
Crowe WE.
J. Am. Chem. Soc.
1986,
108:
3128
12b
Schreiber SL.
Klimas MT.
Sammakia T.
J. Am. Chem. Soc.
1987,
109:
5749 ; first described at the national meeting of the American Chemical Society, April, 1986, in New York City
13a
Lockwood RF.
Nicholas KM.
Tetrahedron Lett.
1977,
18:
4163
13b
Nicholas KM.
Nestle MO.
Deyferth D.
Transition Metal Organometallics
Alper H.
Academic Press;
New York:
1978.
14a
Huisgen R.
Grashey R.
Laur P.
Leitermann H.
Angew. Chem.
1960,
72:
416
14b For a summary of the most common methods of azomethine imine generation, see ref. 11d.
15
Odeh IMA.
PhD Thesis
Wesleyan University;
USA:
1984.
16
Patterson JM.
Ferry JD.
Boyd MR.
J. Am. Chem. Soc.
1973,
95:
4356
17
Buddhu SC.
PhD Thesis
Wesleyan University;
USA:
1988.
See, for example:
18a
Zimmerman H.
Flitsch W.
Kramer V.
Chem. Ber.
1969,
102:
3268
18b
Kakushima M.
Hamel P.
Frenette R.
Rokach J.
J. Org. Chem.
1983,
48:
3214
19a
Jacobi PA.
Buddhu S.
Tetrahedron Lett.
1988,
4823
19b
Jacobi PA.
Cai G.
Tetrahedron Lett.
1991,
32:
1765
19c
Jacobi PA.
Rajeswari S.
Tetrahedron Lett.
1992,
33:
6231
19d
Jacobi PA.
Rajeswari S.
Tetrahedron Lett.
1992,
33:
6235
19e
Jacobi PA.
DeSimone RW.
Tetrahedron Lett.
1992,
33:
6239
19f
Jacobi PA.
Cai G.
Heterocycles
1993,
35:
1103
19g
Jacobi PA.
Brielmann HL.
Hauck SI.
Tetrahedron Lett.
1995,
36:
1193
19h
Jacobi PA.
Guo J.
Zheng W.
Tetrahedron Lett.
1995,
36:
1197
19i
Jacobi PA.
Guo J.
Tetrahedron Lett.
1995,
36:
2717
19j
Jacobi PA.
Brielmann HL.
Hauck SI.
J. Org. Chem.
1996,
61:
5013
19k
Jacobi PA.
Guo J.
Hauck SI.
Leung SH.
Tetrahedron Lett.
1996,
37:
6069
19l
Jacobi PA.
Buddhu SC.
Fry D.
Rajeswari S.
J. Org. Chem.
1997,
62:
2894
19m
Jacobi PA.
Guo J.
Rajeswari S.
Zheng W.
J. Org. Chem.
1997,
62:
2907
19n
Jacobi PA.
Coutts LD.
Guo J.
Hauck SI.
Leung S.
J. Org. Chem.
2000,
65:
205
19o
Jacobi PA.
DeSimone RW.
Ghosh I.
Guo J.
Leung SH.
Pippin D.
J. Org. Chem.
2000,
65:
8478
19p
Jacobi PA.
Pippin D.
Org. Lett.
2001,
3:
827
20a
Hammond GS.
Turro NJ.
Leermakers PA.
J. Phys. Chem.
1962,
66:
1144
20b
Yang NC.
Hui MH.
Shold DM.
Turro NJ.
Hautala RR.
Dawes K.
Dalton JC.
J. Am. Chem. Soc.
1977,
99:
3023
21 The structure of dihydropyrromethenone 63b (E -isomer, R = CO2 Me) and alkyne acid 88c were unequivocally established by single crystal X-ray analysis performed by Ms Gayle Schulte, Yale University.
22a
Boger DL.
Robarge KD.
J. Org. Chem.
1988,
53:
3373
22b
Boger DL.
Robarge KD.
J. Org. Chem.
1988,
53:
5793 ; and references cited therein
See also:
22c
Boger DL.
Corbett WL.
Wiggins JM.
J. Org. Chem.
1990,
55:
2999
22d
Tietze LF.
Hartfiel U.
Tetrahedron Lett.
1990,
31:
1697 ; and references cited therein
23
Evans DA.
Britton TC.
Ellman JA.
Tetrahedron Lett.
1987,
28:
6141
24
Rudisill DE.
Stille JK.
J. Org. Chem.
1989,
54:
5856
25 As expected, enamides 82 exhibited atropisomerism due to hindered N-N bond rotation, although each isomer had identical photochemical behavior.
26a
Pless J.
J. Org. Chem.
1974,
39:
2644
26b
Clark JH.
Chem. Rev.
1980,
80:
429
26c
Morrison H.
J. Am. Chem. Soc.
1965,
87:
932
27a
Sharma RK.
Fry JL.
J. Org. Chem.
1983,
48:
2112
27b
Clark JH.
Chem. Rev.
1980,
80:
429
27c See also ref. 26a.
28
Volante RP.
Tetrahedron Lett.
1981,
22:
3119 ; and references cited therein
29
Takai K.
Heathcock CH.
J. Org. Chem.
1985,
50:
3247 ; and references cited therein
30
Morrison H.
J. Am. Chem. Soc.
1965,
87:
932
31a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
For related methodology, see:
31b
Cassar L.
J. Organomet. Chem.
1975,
93:
253
31c
Dieck HA.
Heck FR.
J. Organomet. Chem.
1975,
93:
259
31d
Stephans RD.
Castro CE.
J. Org. Chem.
1963,
28:
3313
32a
Vasilevskii SF.
Sundukova TA.
Shvartsberg MS.
Kotylarevskii IL.
Bull. Acad. Sci. USSR, Div. Chim. Sci.
1979,
1536 ; Chem. Abstr. 1979 , 91 , 157544g
32b
Vasilevskii SF.
Sundukova TA.
Shvartsberg MS.
Kotylarevskii IL.
Bull. Acad. Sci. USSR, Div. Chim. Sci.
1980,
1871 ; Chem. Abstr. 1981 , 94 , 30464n
32c
Alvarez A.
Guzman A.
Ruiz A.
Velarde E.
Muchowski JM.
J. Org. Chem.
1992,
57:
1653
32d See also: Chen W.
PhD Thesis
University of Alabama;
Tuscaloosa USA:
1990.
33
Barton DHR.
Kervagoret J.
Zard SZ.
Tetrahedron
1990,
46:
7587
34 A similar effect has been described by Magnus et al.: Magnus P.
Carter P.
Elliott J.
Lewis R.
Harling J.
Pitterna T.
Bauta WE.
Fortt S.
J. Am. Chem. Soc.
1992,
114:
2544
35a
Sharma RK.
Fry JL.
J. Org. Chem.
1983,
48:
2112
35b
Pless J.
J. Org. Chem.
1974,
39:
2644
35c
Clark JH.
Chem. Rev.
1980,
80:
429
36a
Jacobi PA.
Zheng W.
Tetrahedron Lett.
1993,
34:
2581
36b
Jacobi PA.
Zheng W.
Tetrahedron Lett.
1993,
34:
2585
37 Cleavage of benzyl ethers with P4 S10 does not appear to be a general reaction, but this reagent works well with carboxylic acids where intramolecular participation is possible. Postulated mechanism: Jacobi PA.
Herradura P.
Tetrahedron Lett.
1997,
38:
6621
38a
Rollin P.
Tetrahedron Lett.
1986,
27:
4169
38b
Rollin P.
Synth. Commun.
1986,
16:
611
39a
Bishop JE.
Nagy JO.
O’Connell JF.
Rapoport H.
J. Am. Chem. Soc.
1991,
113:
8024
39b
Bishop JE.
Dagam SA.
Rapoport H.
J. Org. Chem.
1989,
54:
1876
40
Gossauer A.
Miehe D.
Justus Liebigs Ann. Chem.
1974,
352
41
Takashi K.
Kinoshita H.
Inomata K.
Synlett
1999,
901
42a
Dowd P.
Kennedy P.
Synth. Commun.
1981,
11:
935 ; and references cited therein
See also:
42b
Liotta D.
Santiesteban H.
Tetrahedron Lett.
1977,
18:
4369
42c
Scarborough RM.
Smith AB.
Tetrahedron Lett.
1977,
18:
4361
43 We are grateful to Professor Albert Gossauer, of the Université de Fribourg Suisse, for providing us with NMR and IR spectra for 132 .
44a
Scheuplein SW.
Harms K.
Brückner R.
Suffert J.
Chem. Ber.
1992,
125:
271
44b See also: Nakatani K.
Arai K.
Yamada K.
Terashima S.
Tetrahedron Lett.
1991,
32:
3405
45a
Corriu RJP.
Perz R.
Tetrahedron Lett.
1985,
26:
1311
45b The active catalyst in this system is postulated to be a pentacoordinated silicon-ate complex formed by nucleophilic attack of F- on Si(OMe)4 . See also: Ahn KH.
Lee SJ.
Tetrahedron Lett.
1994,
35:
1875
46 Manuscript in preparation: O’Neal, W. G.; Roberts, W. P.; Jacobi, P. A. ‘A Practical Synthesis of C,D-Unsymmetrical Chlorins’.
47a
Bishop JE.
O’Connell JF.
Rapoport H.
J. Org. Chem.
1991,
56:
5079
47b
Johnson AW.
Markham E.
Price R.
Shaw KB.
J. Chem. Soc.
1959,
3416
47c
Beckmann S.
Wessel T.
Franck B.
Hönle W.
Borrmann H.
von Schnering H.-G.
Angew. Chem., Int. Ed. Engl.
1990,
29:
1393
47d
Mironov AF.
Ovsepyran TR.
Evstigneeva RP.
Preobrazhenskii NA.
Zh. Obshch. Khim.
1965,
35:
324
48 We are grateful to Dr. Victor G. Young, X-ray Crystallographic Laboratory, Department of Chemistry, University of Minnesota, for carrying out the X-ray analysis of 167b .
49
Ho T.-L.
Tetrahedron
1985,
41:
1
50a
Jacobi PA.
Liu H.
J. Am. Chem. Soc.
1999,
121:
1958
50b
Jacobi PA.
Liu H.
J. Org. Chem.
1999,
64:
1778
50c
Jacobi PA.
Liu H.
Org. Lett.
1999,
1:
341
51 We are grateful to Dr. Hui Liu of this department for carrying out these experiments.
52 Sheila graciously made the move to Dartmouth during her last year, and provided invaluable continuity for the project.
53a
Elich TD.
Lagarias JC.
J. Biol. Chem.
1989,
264:
12902
53b
Lagarias JC.
Lagarias DM.
Proc. Natl. Acad. Sci. U.S.A.
1989,
86:
5778
53c
Deforce L.
Tomizawa K.-I.
Ito N.
Farrens D.
Song P.-S.
Furuya M.
Proc. Natl. Acad. Sci. U.S.A.
1991,
88:
10392
53d
Li L.
Lagarias JC.
J. Biol. Chem.
1992,
267:
19204
54a
Arciero DM.
Bryant DA.
Glazer AN.
J. Biol. Chem.
1988,
263:
18343
54b
Arciero DM.
Dallas JL.
Glazer AN.
J. Biol. Chem.
1988,
263:
18350
55
Wahleithner JA.
Li L.
Lagarias JC.
Proc. Natl. Acad. Sci. U.S.A.
1991,
88:
10387
For leading references see:
56a
Takashi K.
Kinoshita H.
Inomata K.
Synlett
1999,
901
56b
Lindner I.
Knipp B.
Braslavsky SE.
Gärtner W.
Schaffer K.
Angew. Chem. Int. Ed.
1998,
37:
1843
56c
Jayasundera KP.
Kinoshita H.
Inomata K.
Chem. Lett.
1998,
1227
57 In addition to Professor Lagarias, I am indebted to his associates who carried out these experiments, Dr. Nicole Frankenberg and in particular Ms. Lixia Shang. Professor Lagarias’ research in this area is supported by NIH Grant GM068552, which is gratefully acknowledged.
58
Biological Applications of Raman Spectroscopy
Spiro TG.
Wiley-Interscience;
New York:
1987.
59
Palings I.
Biochemistry
1989,
28:
1498
60 Personal communication, Professor Richard A. Mathies, University of California, Berkeley, USA.