Subscribe to RSS
DOI: 10.1055/s-2005-918960
Synthesis of the Skipped Polyene Chain and Its Neighboring Highly Oxygenated Pyran Ring en route to Delivering the C(43)-C(67) Subsector of Amphidinol 3
Publication History
Publication Date:
27 October 2005 (online)
Abstract
An approach toward a total synthesis of amphidinol 3 that focuses on elaboration of the C(43)-C(67) subunit is described. The Julia-Kocienski reaction constitutes a straightforward way to unite the skipped polyolefin chain to the adjacent highly functionalized pyran ring.
Key words
polyketide metabolite - carbohydrate homologation - selective desilylation - Julia-Lythgoe reaction - Julia-Kocienski reaction
- 1
Murata M.Matsuoka S.Matsumori N.Paul GK.Tachibana K. J. Am. Chem. Soc. 1999, 121: 870 - See also:
-
2a
Satake M.Murata M.Yasumoto T.Fujita T.Naoki H. J. Am. Chem. Soc. 1991, 113: 9859 -
2b
Houdai T.Matsuoka S.Murata M.Satake M.Ota S.Oshima Y.Rhodes LL. Tetrahedron 2001, 57: 5551 -
2c
Paul GK.Matsumori N.Konoki K.Murata M.Tachibana K. J. Mar. Biotech. 1997, 5: 124 - 3
Paul GK.Matsumori N.Nonoki K.Sasaki M.Murata M.Tachnibana K. In Harmful and Toxic Algal Blooms. Proceedings of Seventh International Conference on Toxic PhytoplanktonYasumoto T.Oshima Y.Fukuyo Y. UNESCO; Sendai, Japan: 1996. p.503 -
4a
BouzBouz S.Cossy J. Org. Lett. 2001, 3: 1451 -
4b
Flamme EM.Roush WR. Org. Lett. 2005, 7: 1411 - 5
deVicente J.Betzemeier B.Rychnovsky SD. Org. Lett. 2005, 7: 1853 - 6
Paquette LA.Chang S.-K. Org. Lett. 2005, 7: 3111 - 7
Stevens RV.Cherpeck RE.Harrison BL.Lai J.Lapalme R. J. Am. Chem. Soc. 1976, 98: 6317 - 8
Schlessinger RH.Wood JL.Poss AJ.Nugent RA.Parsons WH. J. Org. Chem. 1983, 48: 1146 - 9
Brodney MA.O’Leary JP.Hansen JA.Giguere RJ. Synth. Commun. 1995, 25: 521 -
10a
Heathcock CH.Finkelstein BL.Jarvi ET.Radel PA.Hadley CR. J. Org. Chem. 1988, 53: 1922 -
10b
Mulzer J.Mantoulidis A.Öhler E. J. Org. Chem. 2000, 65: 7456 -
10c
Smith AB.Brandt BM. Org. Lett. 2001, 3: 1685 -
10d
Lautens M.Colucci JT.Hiebert S.Smith ND.Bouchain G. Org. Lett. 2002, 4: 1879 - 11
Pirrung MC.Webster NJG. J. Org. Chem. 1987, 52: 3603 - 12
Wadsworth WS. Org. React. 1977, 25: 73 -
13a
Yamamoto Y.Ishihara J.Kanoh N.Murai A. Synthesis 2000, 1894 -
13b
Spino C.Rezaei H.Dupont-Gaudet K.Bélanger F. J. Am. Chem. Soc. 2004, 126: 9926 -
13c See also:
deLeon CY.Ganem B. Tetrahedron 1997, 53: 7731 -
14a
Dess DB.Martin JC. J. Org. Chem. 1983, 48: 4156 -
14b
Ireland RE.Liu L. J. Org. Chem. 1993, 58: 2899 -
14c
Taber DF.Jiang Q. J. Org. Chem. 2001, 66: 1876 - 15
Julia M.Paris J.-M. Tetrahedron Lett. 1973, 4833 - 16 For a parallel observation of this phenomenon and derived mechanistic considerations, consult:
Marino JP.McClure MS.Holub DP.Comasseto JV.Tucci FC. J. Am. Chem. Soc. 2002, 124: 1664 - 17
Nitta A.Ishiwata A.Noda T.Hirama M. Synlett 1999, 695 - 19
Gelas J.Horton D. Carbohydr. Res. 1975, 45: 181 -
20a
Hamper BC. J. Org. Chem. 1988, 53: 5558 -
20b
Railton CJ.Clive DLJ. Carbohydr. Res. 1996, 281: 69 -
20c
The value of the tert-butyl group in minimizing intramolecular cyclization is noted.
- 22
Désiré J.Prandi J. Eur. J. Org. Chem. 2000, 3075 - 23
Lipshutz BH.Pegram JJ. Tetrahedron Lett. 1980, 21: 3343 -
24a
Batten RJ.Dixon AJ.Taylor RJK. Synthesis 1980, 234 -
24b
Tsukada N.Shimada T.Gyoung YS.Asao N.Yamamoto Y. J. Org. Chem. 1995, 60: 143 -
25a
Demake D.Forsyth CJ. Org. Lett. 2000, 2: 3177 -
25b
Sawada D.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2000, 122: 10521 -
26a
Corey EJ.Naresaka K.Shibasaki M. J. Am. Chem. Soc. 1976, 98: 6417 -
26b
Betteli E.Cherubini P.D’Andrea P.Passacantilli P.Piancatelli G. Tetrahedron 1998, 54: 6011 - 27
Still WC.Gennari C. Tetrahedron Lett. 1983, 24: 4405 -
29a Regioselective tritylation:
Pring BG.Jansson AM.Persson K.Andersson I.Gagner-Milchert I.Gustafasson K.Claesson A. J. Med. Chem. 1989, 32: 1069 -
29b For MOM protection:
Miyaoka H.Tamura M.Yamada Y. Tetrahedron Lett. 1998, 39: 621 - 30
Kolb HC.vanNieuwenhze MS.Sharpless KB. Chem. Res. 1994, 94: 2483 - 31
Tang X.-Q.Montgomery J. J. Am. Chem. Soc. 2000, 122: 6950 - 32
Blakemore PR.Cole WJ.Kocienski PJ.Morley A. Synlett 1998, 26 - 33
Smith AB.Adams CM.Kozmin SA. J. Am. Chem. Soc. 2001, 123: 990 - 34
Blakemore PR. J. Chem. Soc., Perkin Trans. 1 2002, 2563
References
Compound 16: IR (neat): 1727, 1650 cm-1. 1H NMR (300 MHz, CDCl3): δ = 9.76 (t, J = 1.6 Hz, 1 H), 6.30 (dt, J = 16.9, 10.2 Hz, 1 H), 6.19-6.00 (m, 5 H), 5.72-5.58 (m, 3 H), 5.09 (dd, J = 16.9, 1.5 Hz, 1 H), 4.96 (d, J = 10.1 Hz, 1 H), 2.60-2.50 (m, 2 H), 2.50-2.32 (m, 2 H), 2.22-2.14 (m, 4 H). 13C NMR (75 MHz, CDCl3): δ = 201.8, 137.2, 134.3, 134.0, 131.8, 131.7, 131.4, 131.3, 130.8, 130.4, 115.1, 43.3, 32.4, 32.3, 25.3.
21The ensuing transformations exemplify the problem as manifested in rather different contexts (Scheme [5] ).
28Compound 28: IR (neat): 3456, 1657, 1589 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.70-7.63 (m, 4 H), 7.44-7.33 (m, 6 H), 5.79-5.73 (m, 1 H), 5.64-5.55 (m, 2 H), 5.27 (ddd, J = 15.8, 5.2, 5.2 Hz, 1 H), 4.46 (s, 2 H), 4.26 (t, J = 2.9 Hz, 1 H), 4.18-4.11 (m, 3 H), 4.07-4.04 (m, 1 H), 3.80 (dd, J = 5.5, 1.2 Hz, 2 H), 3.57-3.51 (m, 2 H), 2.35-2.29 (m, 2 H), 1.77 (br, 1 H), 1.39 (s, 3 H), 1.30 (s, 3 H), 1.03 (s, 9 H), 0.90 (t, J = 8.3 Hz, 2 H), 0.02 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 136.0, 135.9, 133.8, 133.7, 131.5, 130.8, 130.5, 129.7, 129.6, 129.3, 127.5, 127.4, 108.3, 93.7, 80.0, 76.8, 73.2, 66.6, 65.0, 57.9, 28.6, 27.6, 27.0, 25.4, 19.2, 18.0,
-1.38. HRMS (ES): m/z calcd 649.3351[(M + Na]+; found: 649.3347. [α]D
20 +23.0 (c 1.22, CHCl3).
Compound 36: IR (neat): 1599, 1490 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.47-7.43 (m, 6 H), 7.29-7.26 (m, 6 H), 7.26-7.21 (m, 3 H), 6.30 (dt, J = 17.0, 10.3 Hz, 1 H), 6.20-5.97 (m, 5 H), 5.80 (dt, J = 15.2, 4.9 Hz, 1 H), 5.72-5.62 (m, 3 H), 5.44 (dd, J = 15.4, 7.8 Hz, 1 H), 5.10 (d, J = 16.9 Hz, 1 H), 4.97 (d, J = 10.1 Hz, 1 H), 4.75 (d, J = 6.8 Hz, 1 H), 4.69 (d, J = 6.7 Hz, 1 H), 4.39-4.27 (m, 2 H), 4.24 (dd, J = 6.0, 6.0 Hz, 1 H), 4.08-4.02 (m, 1 H), 3.87-3.81 (m, 2 H), 3.71 (ddd, J = 7.9, 4.9, 4.9 Hz, 1 H), 3.35-3.32 (m, 1 H), 3.34 (s, 3 H), 3.20 (dd, J = 10.0, 5.4 Hz, 1 H), 2.22-2.10 (m, 8 H), 1.89-1.84 (m, 1 H), 1.75-1.68 (m, 1 H), 1.44 (s, 3 H), 1.40 (s, 3 H), 1.39 (s, 3 H), 1.33 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 143.9, 137.1, 136.2, 134.3, 133.5, 133.0, 131.3, 131.2, 131.0, 130.9, 128.7, 127.8, 127.0, 126.9, 115.1, 109.2, 108.7, 98.7, 96.8, 86.7, 82.1, 78.2, 77.7, 72.1, 71.5, 70.8, 63.3, 55.9, 32.4, 32.3, 32.2, 29.7, 29.0, 27.9, 27.2, 26.8, 25.6. HRMS (ES): m/z calcd 839.4493 [M + Na]+; found: 839.4479. [α]D 20 -6.8 (c 0.40, C6H6).