Die funktionelle Magnetresonanztomographie (fMRT) ist ein viel versprechendes neues diagnostisches Bildgebungsverfahren zur nichtinvasiven Messung und Visualisierung spezifischer Funktionen des menschlichen Gehirns. Wegen der noch fehlenden medizinischen Zulassung muss die fMRT klinisch im Rahmen wissenschaftlicher Studien durchgeführt werden. Wird die fMRT standardisiert durchgeführt, ist die Erstellung „klinisch-funktioneller Befunde” für individuelle Patienten grundsätzlich möglich. Um interessierten Anwendern den Zugang zur klinisch-wissenschaftlichen fMRT-Diagnostik zu erleichtern, werden in dieser Arbeit wichtige neurophysiologische und technisch-methodische Grundlagen der BOLD-fMRT zusammengefasst, praktische Aspekte der klinischen fMRT erläutert, optimierte und klinisch erprobte Untersuchungsprotokolle vorgeschlagen und die am besten etablierte und validierte klinische fMRT-Anwendung vorgestellt, nämlich die prächirurgische fMRT-Diagnostik bei Patienten mit Hirntumoren.
Abstract
Functional magnetic resonance imaging (fMRI) is a promising new diagnostic MR imaging procedure that enables us to measure and to visualize specific functions of the human brain non-invasively. Until fMRI has gained medical approval, clinical studies need to be performed during scientific trials. However, standardized fMRI is capable of providing clinical „functional diagnoses” in individual patients. To facilitate the approach to clinical fMRI, this paper summarizes important neurophysiological, technical and methodological basics, refers to practical aspects, provides optimized and clinically established fMRI protocols and highlights the most common and best validated clinical application, namely presurgical fMRI in patients with brain tumors.
Key words
Functional magnetic resonance imaging (fMRI) - Motor - Somatosensory - Language - clinical applications
Literatur
1
Belliveau J W, Kennedy D N Jr, McKinstry R C, Buchbinder B R, Weisskoff R M, Cohen M S, Vevea J M, Brady T J, Rosen B R.
Functional mapping of the human visual cortex by magnetic resonance imaging.
Science.
1991;
254
716-719
2
Menon R S, Ogawa S, Hu X, Strupp J P, Anderson P, Ugurbil K.
BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals.
Magn Reson Med.
1995;
33
453-459
3
Frahm J, Merboldt K D, Hanicke W, Kleinschmidt A, Boecker H.
Brain or vein - oxygenation or flow? On signal physiology in functional MRI of human brain activation.
NMR Biomed.
1994;
7
45-53
5
Logothetis N K, Pauls J, Augath M, Trinath T, Oeltermann A.
Neurophysiological investigation of the basis of the fMRI signal.
Nature.
2001;
412
150-157
8
Fox P T, Raichle M E.
Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.
PNAS USA.
1986;
83
1140-1144
10
Hulvershorn J, Bloy L, Gualtieri E E, Leigh J S, Elliott M A.
Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic actication time.
Neuroimage.
2005;
24
216-223
11
Zambreanu L, Wise R G, Brooks J C, Iannetti G D, Tracey I.
A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging.
Pain.
2005;
114
397-407
12
Kwong K K, Belliveau J W, Chesler D A, Goldberg I E, Weisskoff R M, Poncelet B P, Kennedy D N, Hoppel B E, Cohen M S, Turner R, Cheng H M, Brady T J, Rosen B R.
Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.
PNAS USA.
1992;
89
5675-5679
13
Buckner R L, Bandettini P A, O’Craven K M, Savoy R L, Petersen S E, Raichle M E, Rosen B R.
Detection of cortical activation during averaged singke trials of cognitive task using functional magnetic resonance imaging.
PNAS USA.
1996;
93
14 878-14 883
14
Gold S, Christian B, Arndt S, Zeien G, Cizadlo T, Johnson D L, Flaum M, Andreasen N C.
Functional MRI statistical software packages: a comparative analysis.
Hum Brain Mapp..
1998;
6
73-84
16
Fernández G, de Greiff A, v Oertzen J, Reuber M, Lun S, Klaver P, Ruhlmann J, Reul J, Elger C E.
Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation.
Neuroimage.
2001;
14
585-594
17
Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, Sartor K.
Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional MRI.
Neuroscience Letters.
1999;
277
25-28
18
Stippich C, Kapfer D, Hempel E, Heiland S, Sartor K.
Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol.
Neuroscience Letters.
2000;
285
155-159
19
Stippich C, Ochmann H, Sartor K.
Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging (fMRI).
Neuroscience Letters.
2002;
331
50-54
20
Stippich C, Mohammed J, Kress B, Hähnel S, Günther J, Konrad F, Sartor K.
Robust localization and lateralization of human language function: An optimized clinical functional magnetic resonance imaging protocol.
Neuroscience Letters.
2003;
346
109-113
21
Stippich C, Romanowski A, Nennig E, Kress B, Hähnel S, Sartor K.
Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging.
Neuroscience Letters.
2004;
364
90-93
22
Stippich C, Romanowski A, Nennig E, Kress B, Sartor K.
Time-efficient localization of the human secondary somatosensory cortex by functional magnetic resonance imaging.
Neuroscience Letters.
2005;
381
264-268
23
Rutten G J, Ramsey N F, van Rijen P C, Noordmans H J, van Veelen C W.
Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas.
Ann Neurol.
2002;
51
350-360
25
Konrad F, Nennig E, Ochmann H, Kress B, Sartor K, Stippich C.
Does the individual adaptation of standardized speech paradigms for clinical functional magnetic resonance imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca’s and Wernicke’s areas?.
Fortschr Röntgenstr.
2005;
177
381-385
27
Yousry T A, Schmid U D, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P.
Localization of the motor hand area to a knob on the precentral gyrus. A new landmark.
Brain.
1997;
120
141-157
28
Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Lopes M, Mitch M C, Sichez J P, Van Effenterre R.
Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation.
J Neurol Neurosurg Psychiatry.
2003;
74
901-907
29
Holodny A I, Schulder M, Ybasco A, Liu W C.
Translocation of BrocaŽs area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma.
J Comput Assist Tomogr.
2002;
26
941-943
30
Ojemann G A, Ojemann J G, Lettich E, Berger E.
Cortical language localization in left-dominant hemisphere. An electrical stimulation mapping investigation in 117 patients.
J Neurosurg.
1989;
71
316-326
31
Jack C R, Thompson R M, Butts R K, Sharbrough F W, Kelly P J, Hanson D P, Riederer S J, Ehman R L, Hangiandreou N J, Cascino G D.
Sensory motor cortex: correlation of presurgical mapping with functional MR and invasive cortical mapping.
Radiology.
1994;
190
85-92
32
Binder J R, Swanson S J, Hammeke T A, Morris G L, Mueller W M, Fischer M, Benbadis S, Frost J A, Rao S M, Haughton V M.
Determination of language dominance using functional MRI: a comparison with the Wada-test.
Neurology.
1996;
46
978-984
34
Roberts D W, Hartov A, Kennedy F E, Miga M I, Paulsen K D.
Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases.
Neurosurgery.
1998;
43
749-758 (760)
35
Hajnal J V, Mayers R, Oatridge A, Schwieso J E, Young J R, Bydder G M.
Artifacts due to stimulus correlated motion in functional imaging of the brain.
Magn Reson Med.
1994;
31
283-291
36
Hoeller M, Krings T, Reinges M H, Hans F J, Gilsbach J M, Thron A.
Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex.
Acta Neurochir.
2002;
144
279-284
38
Krings T, Erberich S G, Roessler F, Reul J, Thron A.
MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging.
AJNR.
1999;
20
1907-1914
39
Holodny A I, Schulder M, Liu W C, Maldjian J A, Kalnin A J.
Decreased BOLD functional MR activation of the motor and somatosensory cortices adjacent to a glioblastome multiforme: implications for image-guided neurosurgery.
AJNR.
1999;
20
609-612
40
Schmithorst V J, Dardzinski B J, Holland S K.
Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan.
IEEE Trans Med Imaging.
2001;
20
535-539