References
1a
Marafat A.
McGuirk PR.
Helquist P.
J. Org. Chem.
1979,
44:
3888
1b
Anderson RJ.
Coleman JE.
Piers E.
Wallace DJ.
Tetrahedron Lett.
1997,
38:
317
1c
Tanak H.
Kuroda A.
Marusawa H.
Hatanaka H.
Kino T.
Goto T.
Hashimoto M.
J. Am. Chem. Soc.
1987,
109:
5031
1d
Ishibashi Y.
Ohba S.
Nishyama S.
Yamamura S.
Tetrahedron Lett.
1996,
37:
2997
2
Senokuchi K.
Nakai H.
Nakayama Y.
Odagaki Y.
Sakaki K.
Kato M.
Maruyama T.
Miyazaki T.
Ito H.
Kamiyasu K.
Kim S.
Kawamura M.
Hamanaka N.
J. Med. Chem.
1995,
38:
2521
3
Watanabe T.
Hayashi K.
Yoshimatsu S.
Sakai K.
Takeyama S.
Takashima K.
J. Med. Chem.
1980,
23:
50
4a
Denmark SE.
Amburgey J.
J. Am. Chem. Soc.
1993,
115:
10386
4b
Kocienski P.
Dixon NJ.
Wadman S.
Tetrahedron Lett.
1988,
29:
2353
4c
Myers AG.
Kukkola PJ.
J. Am. Chem. Soc.
1990,
112:
8208
4d
Creton I.
Marek I.
Brasseur D.
Jestin JL.
Normant JF.
Tetrahedron Lett.
1994,
35:
6873
For reviews, see:
5a
Ciganek E.
Org. React.
1997,
51:
201
5b
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
5c
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
For recent examples, see:
6a
Das B.
Mahender G.
Chowdhury N.
Banerjee J.
Synlett
2005,
1000
6b
Kim JN.
Lee HJ.
Lee KY.
Gong JH.
Synlett
2002,
173
6c
Kabalka GW.
Venkataiah B.
Dong G.
Org. Lett.
2003,
5:
3803
6d
Kabalka GW.
Venkataiah B.
Dong G.
Tetrahedron Lett.
2003,
44:
4673
6e
Chung YM.
Gong JH.
Kim TH.
Kim JN.
Tetrahedron Lett.
2001,
42:
9023
6f
Shi M.
Jiang JK.
Feng YS.
Org. Lett.
2000,
2:
2397
7a
Li J.
Qian WX.
Zhang YM.
Tetrahedron
2004,
60:
5793
7b
Li J.
Xu H.
Zhang YM.
Tetrahedron Lett.
2005,
46:
1931
7c
Li J.
Wang XX.
Zhang YM.
Synlett
2005,
1039
7d
Li J.
Wang XX.
Zhang YM.
Tetrahedron Lett.
2005,
46:
5233
8 The CsOH·H2O is commercially available (Aldrich). One example of CsOH·H2O-catalyzed reactions, see: Tzalis D.
Knochel P.
Angew. Chem. Int. Ed.
1999,
38:
1463
9
Rose PM.
Clifford AA.
Rayner CM.
Chem. Commun.
2002,
968
10
Basavaiah D.
Bakthadoss M.
Jayapal Reddy G.
Synth. Commun.
2002,
32:
689
11 All Baylis-Hillman adducts were prepared according to literature: Hoffman HMR.
Rabe J.
Angew. Chem., Int. Ed. Engl.
1983,
22:
795
12
Typical Experimental Procedure.
In a 25-mL flask was charged with CsOH·H2O (50 mg, 0.3 mmol) and THF (10 mL). The suspension was stirred at r.t. for 10 min. The Baylis-Hillman adduct 1 (1 mmol) was added to the flask and stirred at r.t. for 0.5-1 h. The reaction mixture was poured into Et2O (50 mL), washed with H2O (2 × 25 mL) and brine (35 mL). The combined ethereal layers were dried over MgSO4. After evaporation of solvent the residue was purified by chromatography using cyclohexane-EtOAc (6:1) as eluent.
13 Spectroscopic data of 2b: oil. 1H NMR (400 MHz, CDCl3): δ = 2.34 (s, 3 H, CH
3), 2.37 (s, 3 H, CH
3), 3.71 (s, 3 H, OCH
3), 3.79 (s, 3 H, OCH
3), 4.20 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.33 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.35 (s, 1 H, O-CH-Ar), 6.00 (t, 1 H, 2
J = 1.6 Hz, terminal olefin-H), 6.35 (t, 1 H, 2
J = 1.6 Hz, terminal olefin-H), 7.13 (d, 2 H, J = 8.0 Hz, ArH), 7.15 (d, 2 H, J = 8.0 Hz, ArH), 7.27 (d, 2 H, J = 8.0 Hz, ArH), 7.39 (d, 2 H, J = 8.0 Hz, ArH), 7.87 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 21.16, 21.39, 51.74, 51.97, 63.72, 79.28, 125.53, 127.81, 128.93, 129.18, 129.97, 131.80, 136.29, 137.60, 139.63, 140.84, 143.24, 144.95, 166.42, 168.15. IR (film): ν = 3073, 3025, 1721, 1631, 1594, 1066 cm-1. MS (70 eV): m/z (%) = 394 [M+]. Anal. Calcd for C24H26O5: C, 73.08; H, 6.64. Found: C, 73.25; H, 6.70. According to NOESY experiment, there is no NOE correlation between the signals of the internal olefin proton and the allylic methylene protons.
14 Selected spectroscopic data for compound 2:
Compound 2a: oil. 1H NMR (400 MHz, CDCl3): δ = 3.69 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 4.23 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.34 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.33 (s, 1 H, OCH-Ph), 5.90 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 6.31 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 7.25-7.51 (m, 10 H, ArH), 7.91 (s, 1 H, ArCH=). IR (film): ν = 3078, 3030, 1720, 1633, 1600, 1067 cm-1. MS (70 eV):
m/z (%) = 366 [M+]. Anal. Calcd for C22H22O5: C, 72.12; H, 6.05. Found: C, 72.25; H, 6.01.
Compound 2c: oil. 1H NMR (400 MHz, CDCl3): δ = 3.70 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 4.20 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.29 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.34 (s, 1 H, O-CH-Ar), 5.94 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 6.36 (t, 1 H, 2
J = 1.2 Hz, terminal-olefin-H), 7.29-7.36 (m, 6 H, ArH), 7.41 (d, 2 H, J = 8.0 Hz, ArH), 7.85 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 51.80, 52.08, 63.56, 78.79, 125.90, 128.43, 128.74, 129.11, 131.09, 131.36, 132.95, 133.80, 135.54, 137.83, 140.52, 143.54, 166.05, 167.58. IR (film): ν = 3070, 3026, 1724, 1632, 1593, 1118 cm-1. MS (70 eV): m/z (%) = 434 [M+], 436 [M+ + 2]. Anal. Calcd for C22H20Cl2O5: C, 60.70; H, 4.63. Found: C, 60.56; H, 4.69.
Compound 2d: oil. 1H NMR (400 MHz, CDCl3): δ = 3.74 (s, 3 H, OCH
3), 3.82 (s, 3 H, OCH
3), 4.25 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.32 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.76 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 5.83 (s, 1 H, O-CH-Ar), 6.41 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 7.22-7.42 (m, 6 H, ArH), 7.52-7.63 (m, 2 H, ArH), 8.04 (s, 1 H, ArCH=). 13C NMR (400 MHz, CDCl3): δ = 52.15, 52.40, 64.72, 76.07, 127.08, 127.13, 127.51, 129.21, 129.40, 128.64, 129.73, 130.19, 130.66, 131.19, 131.49, 133.28, 136.88, 139.84, 141.38, 141.83, 166.48, 167.61. IR (film): ν = 3066, 3025, 1721, 1635, 1592, 1067 cm-1. MS (70 eV): m/z (%) = 434 [M+], 436 [M+ + 2]. Anal. Calcd for C22H20Cl2O5: C, 60.70; H, 4.63. Found: C, 60.64; H, 4.56.
Compound 2e: oil. 1H NMR (400 MHz, CDCl3): δ = 3.79 (s, 3 H, OCH
3), 3.80 (s, 3 H, OCH
3), 3.81 (s, 3 H, OCH
3), 3.84 (s, 3 H, OCH
3), 4.25 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 4.34 (d, 1 H, 2
J = 10.0 Hz, methylene-H), 5.35 (s, 1 H, O-CH-Ar), 6.01 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 6.36 (t, 1 H, 2
J = 1.2 Hz, terminal olefin-H), 6.86 (d, 2 H, J = 8.0 Hz, ArH), 6.90 (d, 2 H, J = 8.0 Hz, ArH), 7.32 (d, 2 H, J = 8.0 Hz, ArH), 7.48 (d, 2 H, J = 8.0 Hz, ArH), 7.86 (s, 1 H, ArCH=). IR (film): ν = 3075, 3020, 1721, 1629, 1606, 1120 cm-1. MS (70 eV): m/z (%) = 426 [M+]. Anal. Calcd for C24H26O7: C, 67.59; H, 6.15. Found: C, 67.40; H, 6.24.
Bis-allyl ethers were found to be useful intermediates in organic synthesis, see:
15a
Ben Ammar H.
Le Nôtre J.
Salem M.
Kaddachi MT.
Dixneuf PH.
J. Organomet. Chem.
2002,
662:
63
15b
Le Nôtre J.
Brissieux L.
Sémeril D.
Bruneau C.
Dixneuf PH.
Chem. Commun.
2002,
1772