Abstract
Diastereotopic group selection in 1,4-cyclohexadienes is a useful approach to synthesize rather complex compounds in a single operation. The stereoinduction occurs via a covalently bound stereogenic center. Cycloadditions, Michael additions, and radical reactions have been conducted as group-selective processes. Even more elegant is the desymmetrization of an achiral 1,4-cyclohexadiene. Various chiral reagents have been used successfully to desymmetrize 1,4-cyclohexadienes. In one step, at least two new stereogenic centers are formed. Chiral quaternary carbon centers can be obtained with high selectivity. This Account will provide an overview on diastereotopic group selection and desymmetrization in various 1,4-cyclohexadiene derivatives.
-
1 Introduction
-
2 Diastereotopic Group-Selective Processes
-
2.1 Cycloaddition
-
2.2 Michael Additions
-
2.3 Radical Processes
-
3 Desymmetrizations
-
3.1 Oxidations
-
3.2 Transition-Metal-Mediated Processes
-
3.3 Metalated Cyclohexadienes
-
4 Conclusions
Key words
asymmetric synthesis - catalysis - allylations - radical reactions - γ-butyrolactones
References
1a
Rahman Abd N.
Landais Y.
Curr. Org. Chem.
2002,
6:
1369
1b
Hoffmann RW.
Synthesis
2004,
2075
2
Grainger RS.
Tisselli P.
Steed JW.
Org. Biomol. Chem.
2004,
2:
151
3a
Wipf P.
Kim Y.
Tetrahedron Lett.
1992,
33:
5477
3b
Wipf P.
Kim Y.
Goldstein DM.
J. Am. Chem. Soc.
1995,
117:
11106
4
Wipf P.
Rector SR.
Takahashi H.
J. Am. Chem. Soc.
2002,
124:
14848 ; and references cited therein
5
Martin SF.
Campbell CL.
J. Org. Chem.
1988,
53:
3184
6a
Bland D.
Hart DJ.
Lacoutiere S.
Tetrahedron
1997,
53:
8871
6b
Bland D.
Chambournier G.
Dragan V.
Hart DJ.
Tetrahedron
1999,
55:
8953
7
Fujioka H.
Kitagaki S.
Ohno N.
Kitagawa H.
Kita Y.
Matsumoto K.
Tetrahedron: Asymmetry
1994,
5:
333
8
Kodama S.
Hamashima Y.
Nishide K.
Node M.
Angew. Chem. Int. Ed.
2004,
43:
2659
9a
Curran DP.
Geib SJ.
Lin C.-H.
Tetrahedron: Asymmetry
1994,
5:
199
9b See also: Beckwith ALJ.
Roberts DH.
J. Am. Chem. Soc.
1986,
108:
5893
10a
Curran DP.
Qi H.
DeMello NC.
Lin C.-H.
J. Am. Chem. Soc.
1994,
116:
8430
10b See also: Curran DP.
Lin C.-H.
DeMello N.
Junggebauer J.
J. Am. Chem. Soc.
1998,
120:
342
11
Elliott MC.
El Sayed NNE.
Tetrahedron Lett.
2005,
46:
2957
12
Villar F.
Kolly-Kovac T.
Equey O.
Renaud P.
Chem.-Eur. J.
2003,
9:
1566
13
Nguyen TM.
Seifert RJ.
Mowrey DR.
Lee D.
Org. Lett.
2002,
4:
3959
14a
Angelaud R.
Landais Y.
J. Org. Chem.
1996,
61:
5202
14b
Landais Y.
Chimia
1998,
52:
104
14c
Angelaud R.
Babot O.
Charvat T.
Landais Y.
J. Org. Chem.
1999,
64:
9613
15
Kolb HC.
vanNieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
16
Angelaud R.
Landais Y.
Schenk K.
Tetrahedron Lett.
1997,
38:
1407
17
Lorenz JC.
Frohn M.
Zhou X.
Zhang J.-R.
Tang Y.
Burke C.
Shi Y.
J. Org. Chem.
2005,
70:
2904
18
Sato Y.
Sodeoka M.
Shibasaki M.
J. Org. Chem.
1989,
54:
4738
19
Ohrai K.
Kondo K.
Sodeoka M.
Shibasaki M.
J. Am. Chem. Soc.
1994,
116:
11737
20
Mori M.
Takaki T.
Makabe M.
Sato Y.
Tetrahedron Lett.
2003,
44:
3797
21
Honma M.
Nakada M.
Tetrahedron Lett.
2003,
44:
9007
22a
Studer A.
Amrein S.
Angew. Chem. Int. Ed.
2000,
39:
3080
22b
Studer A.
Amrein S.
Schleth F.
Schulte T.
Walton JC.
J. Am. Chem. Soc.
2003,
125:
5726
23 For a review on the use of functionalized cyclohexadienes as radical precursors, see: Walton JC.
Studer A.
Acc. Chem. Res.
2005,
38:
794
24
Schleth F.
Vogler T.
Harms K.
Studer A.
Chem.-Eur. J.
2004,
10:
4171
25
Schleth F.
Studer A.
Angew. Chem. Int. Ed.
2004,
43:
313
26
Hafner A.
Duthaler RO.
Marti R.
Rihs G.
Rothe-Streit P.
Schwarzenbach F.
J. Am. Chem. Soc.
1992,
114:
2321
27 For an excellent review on the use of TADDOLs in asymmetric synthesis, see: Seebach D.
Beck AK.
Heckel A.
Angew. Chem. Int. Ed.
2001,
40:
92
28
Noyori R.
Kitamura M.
Angew. Chem., Int. Ed. Engl.
1991,
30:
49
29a Schleth, F., Studer, A. unpublished results
29b
Nagaoka H.
Rutsch W.
Schmid G.
Iio H.
Johnson MR.
Kishi Y.
J. Am. Chem. Soc.
1980,
102:
7965
29c
Fronza G.
Fuganti C.
Grasselli P.
Pedrocchi-Fantoni G.
Zirotti C.
Tetrahedron Lett.
1982,
23:
4143
29d
Williams DR.
Kingler FD.
Tetrahedron Lett.
1987,
28:
869
30
Knoop CA.
Studer A.
Adv. Synth. Catal.
2005,
374:
1542
31a
Brieger G.
Bennett JN.
Chem. Rev.
1980,
80:
63
31b
Nicolaou KC.
Snyder SA.
Montagnon T.
Vassilikogiannakis G.
Angew. Chem. Int. Ed.
2002,
41:
1668
31c
Corey EJ.
Angew. Chem. Int. Ed.
2002,
41:
1650
Some examples:
32a
Drutu I.
Njardarson JT.
Wood JL.
Org. Lett.
2002,
4:
493
32b
Miyaoka H.
Yamada Y.
Bull. Chem. Soc. Jpn.
2002,
75:
203
32c
Ng SM.
Beaudry CM.
Trauner D.
Org. Lett.
2003,
5:
1701
33
Takacs JM.
Helle MA.
Seely FL.
Tetrahedron Lett.
1986,
27:
1257
34 The enantiomeric excess was determined by chiral HPLC.
35 Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Center as private communication no. CCDC-280946 [Klaus Harms, Private Communication(1078), 2005]. Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road Cambridge CB2 1EZ, UK).
Reviews:
36a
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
36b
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
36c
Connon SJ.
Blechert S.
Top. Organomet. Chem.
2004,
11:
93
36d
Grubbs RH.
Tetrahedron
2004,
60:
7117
36e
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
37a
Dewi P.
Randl S.
Blechert S.
Tetrahedron Lett.
2005,
46:
577
See also:
37b
Funk TW.
Efskind J.
Grubbs RH.
Org. Lett.
2005,
7:
187
37c
Paquette LA.
Basu K.
Eppich JC.
Hofferberth JE.
Helv. Chim. Acta
2002,
85:
3033