References
1a
König B.
Fonseca MH.
Eur. J. Inorg. Chem.
2000,
2303 ; and references therein
1b
Katz JL.
Feldman MB.
Conry R.
Org. Lett.
2005,
7:
91
1c
Gerkensmeier T.
Mattay J.
Näther C.
Chem.-Eur. J.
2001,
7:
465
2a
Ito A.
Ono Y.
Tanaka K.
J. Org. Chem.
1999,
64:
8236
2b
Selby TD.
Blackstock SC.
Org. Lett.
1999,
1:
2053
2c
Hauck SI.
Lakshmi KV.
Hartwig JF.
Org. Lett.
1999,
1:
2057
2d
Ito A.
Ono Y.
Tanaka K.
Angew. Chem. Int. Ed.
2000,
39:
1072
2e
Miyazaki Y.
Kanbara T.
Yamamoto T.
Tetrahedron Lett.
2002,
43:
7945
2f
Wang M.-X.
Zhang X.-H.
Zheng Q.-Y.
Angew. Chem. Int. Ed.
2004,
43:
838
2g
Suzuki Y.
Yanagi T.
Kanbara T.
Yamamoto T.
Synlett
2005,
263
2h
Tsue H.
Ishibashi K.
Takahashi H.
Tamura R.
Org. Lett.
2005,
7:
2165
3a
Smith GW.
Nature (London)
1963,
198:
879
3b
Graubaum H.
Lutze G.
Costisella B.
J. Prakt. Chem./Chem.-Ztg.
1997,
339:
266
3c
Graubaum H.
Lutze G.
Costisella B.
Lindon B.
J. Prakt. Chem./Chem.-Ztg.
1997,
339:
672
3d
Wang M.-X.
Yang H.-B.
J. Am. Chem. Soc.
2004,
126:
15412
4a
Huc I.
Eur. J. Org. Chem.
2004,
17 ; and references therein
4b
Odriozola I.
Kyristakas N.
Lehn J.-M.
Chem. Commun.
2004,
62
4c
Zhu J.
Wang X.-Z.
Chen Y.-Q.
Jiang X.-K.
Chen X.-Z.
Li Z.-T.
J. Org. Chem.
2004,
69:
6221
4d
Yuan L.
Zeng H.
Yamato K.
Sanford AR.
Feng W.
Atreya HS.
Sukumaran DK.
Szyperski T.
Gong B.
J. Am. Chem. Soc.
2004,
126:
16528
4e
Jiang H.
Leger J.-M.
Guionneau P.
Huc I.
Org. Lett.
2004,
6:
2985
4f
Yuan L.
Feng W.
Yamato K.
Sanford AR.
Xu D.
Guo H.
Gong B.
J. Am. Chem. Soc.
2004,
126:
11120
4g
Maurizot V.
Dolain C.
Huc I.
Eur. J. Org. Chem.
2005,
1293
4h
He L.
An Y.
Yuan L.
Yamato K.
Feng W.
Gerlitz O.
Zheng C.
Gong B.
Chem. Commun.
2005,
3788
5a
Kanbara T.
Izumi K.
Nakadani Y.
Narise T.
Hasegawa K.
Chem. Lett.
1997,
1185
5b
Spetseris N.
Ward RE.
Meyer TY.
Macromolecules
1998,
31:
3158
5c
Kanbara T.
Nakadani Y.
Hasegawa K.
Polym. J.
1999,
31:
206
5d
Kanbara T.
Miyazaki Y.
Hasegawa K.
Yamamoto T.
J. Polym. Sci., Part A: Polym. Chem.
2000,
38:
4194
6a
Kiehlmann E.
Lauener RW.
Can. J. Chem.
1989,
67:
335
6b
Majetich G.
Hicks R.
Reister S.
J. Org. Chem.
1997,
62:
4321
7
Experimental Procedure.
A mixture of 1,3-dibromo-4,6-dimethoxybenzene (296 mg, 1 mmol) and 1,3-phenylenediamine (108 mg, 1 mmol) was dissolved in toluene (15 mL). Sodium-tert-butoxide (288 mg, 3 mmol), tris(dibenzylideneacetone)dipalladium(0)
[Pd2 (dba)3; 46 mg, 0.05 mmol], and 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (XANTPHOS; 58 mg, 0.1 mmol) were added to the solution. The reaction mixture was stirred at 100 °C for 5 d under N2. After cooling to r.t., the mixture was quenched by the addition of an aqueous solution of EDTA-2K (ca. 100 mL), and the product was extracted with CHCl3. The crude product was purified by column chromatography on silica gel (yield: 1, 19%; 2, 9%; 3, 1%).
Macrocycle 1 (m = 2, arene unit n = 4): FAB-MS: m/z = 485 [M + H]+. 1H NMR (400 MHz, CDCl3): δ = 7.28 (s, 2 H), 7.11 (s, 2 H), 7.09 (t, J = 7.8 Hz, 2 H), 6.55 (s, 2 H), 6.36 (d, J = 7.8 Hz, 4 H), 5.67 (br, 4 H), 3.79 (s, 12 H). 13C NMR (100 MHz, CDCl3): δ = 145.2, 144.1, 130.4, 126.4, 111.1, 109.2, 102.9, 99.0, 56.8.
Macrocycle 2 (m = 3, arene unit n = 6): FAB-MS: m/z = 727 [M + H]+. 1H NMR (400 MHz, CDCl3): δ = 7.32 (s, 3 H), 7.00 (t, J = 7.7 Hz, 3 H), 6.96 (s, 3 H), 6.53 (s, 3 H), 6.26 (d, J = 7.8 Hz, 6 H), 5.78 (s, 6 H), 3.78 (s, 18 H). 13C NMR (100 MHz, CDCl3): δ = 146.2, 146.0, 130.0, 125.0, 114.9, 108.4, 102.3, 98.1, 56.4.
Macrocycle 3 (m = 4, arene unit n = 8): FAB-MS: m/z = 969 [M + H]+. 1H NMR (400 MHz, CDCl3): δ = 7.27 (s, 4 H), 7.06 (s, 4 H), 6.74 (br, 4 H), 6.46 (br, 4 H), 6.41 (br, 8 H), 5.73 (br, 8 H), 3.78 (s, 24 H).
8
Corbett HF.
J. Chem. Soc., Perkin Trans. 2
1972,
999
9 Preparation of the macrocycles 1-3 using 1,3-dibromobenzene and 4,6-dimethoxy-1,3-phenylenediamine was carried out in analogy with ref. 7 (yield: 1, 23%; 2, 13%; 3, 3%).
10
Michinobu T.
Inui J.
Nishide H.
Polyhedron
2003,
22:
1945
11 Preparation of macrocycles 4 and 5 was carried out in analogy with ref. 7 using 1,3-dibromo-4,6-dihexyloxybenzene and 1,3-phenylenediamine (yield: 4, 12%; 5, 3%).
Macrocycle 4 (m = 2, arene unit n = 4): FAB-MS: m/z = 765 [M + H]+. 1H NMR (400 MHz, CDCl3): δ = 7.31 (s, 2 H), 6.97 (br t, 4 H), 6.52 (s, 2 H), 6.28 (d, J = 8.6 Hz, 4 H), 5.78 (s, 4 H), 3.89 (t, J = 8.8 Hz, 8 H), 1.72 (q, J = 9.1 Hz, 8 H), 1.30 (m, 24 H), 0.88 (br t, 12 H). 13C NMR (100 MHz, CDCl3): δ = 145.6, 145.4, 134.2, 132.5, 123.1, 101.0, 99.9, 87.7, 69.9, 31.6, 29.4, 25.7, 22.6, 14.1.
Macrocycle 5 (m = 3, arene unit n = 6): FAB-MS: m/z = 1147 [M + H]+. 1H NMR (400 MHz, CDCl3): δ = 7.31 (s, 3 H), 6.96 (br, 6 H), 6.55 (br m, 9 H), 5.75 (br, 6 H), 3.91 (br, 12 H). 1.75 (br, 12 H) 1.31 (br, 36 H), 0.88 (br, 18 H). 13C NMR (100 MHz, CDCl3): δ = 145.5, 145.2, 129.8, 127.4, 126.2, 101.2, 100.9, 94.0, 69.9, 31.6, 29.4, 25.8, 22.7, 14.1.
12 Crystallographic data for 6: C22H22Br2N2O4, M = 538.23, triclinic, space group P1bar, a = 7.924 (2), b = 10.581 (5), c = 13.436 (4) Å, α = 98.971 (12)°, β = 94.465 (12)°, γ = 106.014 (13)°, V = 1060.9 (6) Å3, Z = 2, D
calcd = 1.685 g cm-3, µ(MoKα) = 38.64 cm-1, T = 113 K, F(000) = 540, 14632 reflections measured, 4397 unique, 3515 observed [I > 3σ(I)], 293 variables, R(F
0) = 0.049, R
w
(F
0) = 0.063, GOF = 1.087. Crystallographic data for 1·MeCN: C30H31N5O4, M = 525.61, triclinic, space group P1bar, a = 10.302 (7), b = 11.632 (8), c = 13.260 (8) Å, α = 100.305 (2)°, β = 106.047 (7)°, γ = 114.926 (7)°, V = 1302.9 (14) Å3, Z = 2, D
calcd = 1.340 g cm-3, µ(MoKα) = 0.91 cm-1, T = 113 K, F(000) = 556, 19554 reflections measured, 5598 unique, 2971 observed [I > 2σ(I)], 383 variables, R(F
0) = 0.059, R
w
(F
0) = 0.070, GOF = 1.128.
13 Preparation of compound 6 was carried out in analogy with ref. 7 using 1,3-phenylenediamine with 2 equiv of 1,3-dibromo-4,6-dimethoxybenzene (55% yield).
Compound 6: FAB-MS: m/z 539 [M + 2 + H]+. 1H NMR (400 MHz, CDCl3): δ = 7.44 (s, 2 H), 7.13 (t, J = 8.4 Hz, 1 H), 6.59 (s, 1 H), 6.57 (d, J = 8.4 Hz, 2 H), 6.55 (s, 2 H), 5.72 (s, 2 H), 3.87 (s, 12 H). 13C NMR (100 MHz, CDCl3): δ = 150.5, 149.7, 144.6, 130.1, 127.0, 122.0, 109.7, 105.7, 102.0, 98.2, 57.2, 56.0.
14 Macrocycle 1 (48 mg, 0.1 mmol) was dissolved in Ac2O (1 mL). The reaction mixture was refluxed for 4 h. The reaction mixture was filtered and the precipitate was washed with H2O and MeOH (7: 92% yield). Reaction of 2 with Ac2O was carried out analogously (8: 87% yield).
Macrocycle 7: FAB-MS: m/z = 653 [M + H]+. 1H NMR (400 MHz, CDCl3): δ = 7.98 (m, 10 H), 7.06 (br, 2 H), 4.37 (br, 12 H), 2.71 (br, 12 H).
Macrocycle 8: FAB-MS: m/z = 979 [M + H]+. 1H NMR (400 MHz, DMSO-d
6, 100 °C): δ = 7.31 (br, 3 H), 7.18 (br, 6 H), 7.02 (br, 6 H), 6.85 (s, 3 H) 3.88 (s, 18 H), 1.81 (s, 18 H).
15 Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre; publication numbers CCDC 282778 (1) and 282779 (6).