Subscribe to RSS
DOI: 10.1055/s-2005-922779
Mercuric Triflate·(TMU)2 Catalyzed Cyclization of a Propargylic Ketone into a Monosubstituted Furan
Publication History
Publication Date:
16 December 2005 (online)
Abstract
Formation of a furan derivative was observed in the course of a synthetic approach towards a new carotenoid metabolite, starting from a propargylic ketone, in the presence of mercuric triflate-tetramethylurea complex.
Key words
alkynes - ketones - furans - catalysis - addition reactions
- 1
Roussakis C,Bergé JP,Baud JP,Chevolot L, andDurand P. inventors; WO 0044718 A1, 20000803. ; Chem. Abstr. 2000, 133, 134246 - 2
Bergé JP.Bourgougnon N.Carbonnelle D.Le Bert V.Tomasoni C.Durand P.Roussakis C. Anticancer Res. 1997, 17: 2115 -
4a
Nagpal A.Unny R.Joshi YC. Heterocycl. Commun. 2001, 32: 589 -
4b
Simoni D.Invidiata FP.Rondanin R.Grimaudo S.Cannizzo G.Barbusca E.Porretto F.D’Alessandro N.Tolomeo M. J. Med. Chem. 1999, 42: 4961 -
4c
Alekseev VV.Zelinin KN.Yakimovich SI. Russ. J. Org. Chem. 1995, 31: 705 -
4d
Ellis GP. The Chemistry of Heterocyclic Compounds, In Chromanones and Chromones Vol. 33:Ellis GP. J. Wiley and Sons; USA: 1977. p.495 -
4e
Raston CL.Salem G. J. Chem. Soc., Chem. Commun. 1984, 1702 -
4f
Buchanan JG.Sable HZ. In Selective Organic Transformations Vol. 2:Thyagarajan BS. Wiley-Interscience; New York: 1972. p.1 - 5
Garnovskii AD.Kharixov BI.Blanco LM.Garnovskii DA.Burlov AS.Vasilchenko IS.Bondarenko GI. J. Coord. Chem. 1999, 46: 365 -
6a
Beck AK.Hoekstra MS.Seebach D. Tetrahedron Lett. 1977, 18: 1187 -
6b
Tang Q.Sen SE. Tetrahedron Lett. 1998, 39: 2249 -
6c
Katritzky AR.Pastor A. J. Org. Chem. 2000, 65: 3679 -
6d
Le Roux C.Mandrou S.Dubac J. J. Org. Chem. 1996, 61: 3885 ; and references cited therein - For recent references, see:
-
6e
Wiles C.Watts P.Haswell SJ.Pombo-Villar E. Tetrahedron Lett. 2002, 43: 2945 -
6f
Kel’in AV. Curr. Org. Chem. 2003, 7: 1 - 7
Ballini R.Bartoli G. Synthesis 1993, 965 - 8
Fargeas V.Baalouch M.Metay E.Baffreau J.Ménard D.Gosselin P.Bergé J.-P.Barthomeuf C.Lebreton J. Tetrahedron 2004, 60: 10359 - 9
Sondheimer F.Amiel Y.Gaoni Y. J. Am. Chem. Soc. 1961, 84: 270 - 10
Stacy GW.Mikulec RA. Org. Synth., Coll. Vol. IV 1963, 13 - 11
Nishizawa M.Skwarczynski M.Imagawa H.Sugihara T. Chem. Lett. 2002, 12 - 14
Larock RC.Harrison LW. J. Am. Chem. Soc. 1984, 106: 4218 - 16
Sniady A.Wheeler KA.Dembinski R. Org. Lett. 2005, 7: 1769 - 17
Hashmi ASK.Bats JW.Choi J.-H.Schwarz L. Tetrahedron Lett. 1998, 39: 7491 - 20
Zeni G.Larock RC. Chem. Rev. 2004, 104: 2285 ; and references therein -
21a
Marshall JA.Bartley GS. J. Org. Chem. 1994, 59: 7169 -
21b
Aucagne V.Amblard F.Agrofoglio LA. Synlett 2004, 2406 -
22a
Hashmi ASK.Schwarz L.Choi J.-H.Frost TM. Angew. Chem. Int. Ed. 2000, 39: 2285 -
22b
Yao T.Zhang X.Larock RC. J. Am. Chem. Soc. 2004, 126: 11164 - 23
Kel’in AV.Gevorgyan V. J. Org. Chem. 2002, 67: 95 - 24
Barluenga J.Vazquez-Villa H.Ballesteros A.Gonzalez JM. J. Am. Chem. Soc. 2003, 125: 9028 -
25a
Brown CD.Chong JM.Shen L. Tetrahedron 1999, 55: 14233 -
25b
Obrecht D. Helv. Chim. Acta 1989, 72: 447 -
26a
Arcadi A.Marinelli F.Pini E.Rossi E. Tetrahedron Lett. 1996, 37: 3387 -
26b
Vieser R.Eberbach W. Tetrahedron Lett. 1995, 36: 4405 - 27
Imagawa H.Kurisaki T.Nishizawa M. Org. Lett. 2004, 6: 3679 -
28a
Hashmi ASK.Schwarz L.Bats JW. J. Prakt. Chem. 2000, 342: 40 -
28b
Hashmi ASK.Schwarz L.Bolte M. Tetrahedron Lett. 1998, 39: 8969
References and Notes
The preparation of aldehyde 2 from cyclohexane-1,4-diol will be reported in a forthcoming full paper.
12The red form of mercuric oxide was used although Nishizawa et al. (see ref. 11) described the reaction with the yellow form.
13
Typical Experimental Procedure for the Synthesis of Aldehydes 4 and 5 and Furan 11.
Tf2O (8 µL, 0.046 mmol, 0.11 equiv) and TMU (11 µL, 0.092 mmol, 0.22 equiv) were added in succession at r.t. to a stirred suspension of mercuric oxide (red, 10 mg, 0.046 mmol, 0.11 equiv) in dry MeCN (1 mL). After 10 min, a solution of homopropargylic alcohol 3 (132 mg, 0.41 mmol, 1 equiv) in dry CH2Cl2 (0.5 mL) was added, immediately followed by H2O (22 µL, 1.22 mmol, 3 equiv) and the mixture was stirred 24 h at r.t. After addition of a 1:1 mixture of sat. aq NaHCO3 and brine (2 mL), the mixture was extracted with EtOAc (4 × 10 mL). The combined organic phases were washed with a 10% HCl solution (10 mL), dried over anhyd Na2SO4 and the solvent was evaporated. Purification by flash chromatography (elution with cyclohexane-EtOAc, 9:1 to 6:4) afforded OTBS-protected aldehydes (13 mg, 10%, partly separated) and unprotected aldehydes 4 and 5 (28 mg, 33%, partly separated), as colorless oils.
Analytical data for aldehyde 4 (ca. 1:2 Z:E mixture): R
f
= 0.40 (eluent: cyclohexane-EtOAc, 6:4). IR (film): 3407, 2953, 2922, 2858, 1667,1458, 1364, 1190, 1117, 1048, 909, 877, 834 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.00 and 1.03 [2 s, 6 H, (Me)2-C, 1:3], 1.02 and 1.05 [2 s, 6 H, (Me)2-C, 2:3], 1.26 (br s, 1 H, OH), 1.35 (m, 1 H), 1.78 (m, 2 H), 1.91 (br s, 3 H, Me-C=, 1:3), 2.11 (br s, 3 H, Me-C=, 2:3), 2.19 (m, 1 H), 2.82 (br s, 2 H, CH
2
CH=, 2:3), 3.21 (br s, 2 H, CH
2
CH=, 1:3), 3.98 (m, 1 H, CHOH), 5.26 (br s, 1 H, CH2CH=), 5.88 (d, J = 8.1 Hz, 1 H, CH-CHO, 2:3), 5.99 (d, J = 8.1 Hz, 1 H, CHCHO, 1:3), 9.95 (d, J = 8.1 Hz, 1 H, CHO, 1:3), 9.99 (d, J = 8.1 Hz, 1 H, CHO, 2:3). 13C NMR (100 MHz, CDCl3): δ = 17.2 (q), 24.8 (q), 29.5 (q), 29.6 (q), 29.8 (q), 31.27 (q), 31.31 (q), 34.4 (s), 34.5 (s), 37.7 (t), 37.9 (t), 40.2 (t), 46.0 (t), 48.6 (t), 65.99 (d), 66.03 (d), 128.2 (s), 128.6 (d), 128.7 (s), 129.8 (d), 135.2 (d), 136.1 (d), 161.5, 161.8 (s), 190.9 (d), 191.4 (d). GCMS (EI, 70 eV, minor diastereomer): m/z (%) = 208 (5), 190 (38), 175 (79), 157 (64), 137 (84), 119 (56), 105 (80), 91 (85), 77 (55), 43 (50), 41 (90), 39 (100). GCMS (EI, 70 eV, major diastereomer): m/z (%) = 208 (2), 175 (36), 157 (37), 147 (69), 119 (45), 107(100), 105(68), 91 (46), 79 (33), 55 (49), 41 (64), 39 (68). GCMS (CI+, i-C4H10, both diastereomers): m/z = 209 [MH+], 191, 173, 163, 147, 109, 95, 69. HRMS (EI): m/z calcd for C13H20O2: 208.1463; found: 208.1454. Analytical data for OTBS-protected aldehyde 5: R
f
= 0.52 (eluent: PE-Et2O, 9:1). IR (film): 2955, 2928, 2857, 1727, 1643, 1471, 1381, 1360, 1256, 1080, 836, 775, 666 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.06 [s, 6 H (Me)2-Si], 0.88 (s, 9 H, t-Bu-Si), 0.97 and 0.99 [2 s, 2 × 3H, (Me)2-C], 1.34 and 1.62 [2 m, 2 H, CH
2
-C(Me)2], 1.79 and 2.04 (2 m, 2 H, CH
2
C=CH2), 2.68 (br s, 2 H, CH
2
CH=C), 3.01 (br s, 2 H, CH
2
CH=O), 3.90 (dddd, J = 11.3, 9.1, 5.5, 3.6 Hz, 1 H, CHOSi), 4.95 (br s, 1 H, CH
2=C), 5.06 (br s, 1 H, =CHCH2), 5.15 (br s, 1 H, CH
2=C), 9.59 (t, J = 2.5 Hz, 1 H, CHO). 13C NMR (100 MHz, CDCl3): δ = -4.6 (q), 18.2 (s), 26.0 (q), 29.5 (q), 31.2 (q), 34.2 (s), 38.0 (t), 45.5 (t), 46.4 (t), 49.9 (t), 66.8 (d), 116.6 (t), 129.4 (s), 134.9 (d), 138.7 (s), 199.9 (d). HRMS (ESI): m/z calcd for C19H34O2NaSi: 345.2226. Found: 345.2221.
Depending on reaction time, small amounts of TBS-protected alcohols 4 and 5 were also isolated.
18The result is the same when the crude propargylic ketone 9 or the purified allene 10 is used for the hydration reaction.
19Analytical data for 11 (ca. 3:2 mixture of cis:trans diastereoisomers): R f = 0.34 (eluent: PE-Et2O, 6:4). IR (film): 3352, 2954, 2926, 2866, 1715, 1647, 1588, 1501, 1461, 1364, 1258, 1149, 1044, 1015, 899, 799, 730, 597 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.80, 0.86, 0.98, 0.99 (4 × s, 3 H, Me), 1.42 [br t, J = 12.5 Hz, 1 H, CH 2C(Me)2, 2:5], 1.61 [ddt, J = 12.7, 4.7, 1.3 Hz, 1 H, CH 2C(Me)2, 3:5], 1.75 (br s, 1 H, OH), 1.80 [br t, J = 12.7 Hz, 1 H, CH 2C(Me)2, 3:5], 1.87 [ddd, J = 12.5, 4.4, 2.1 Hz, 1 H, CH 2C(Me)2, 2:5], 2.07 (br t, J = 12.0 Hz, 1 H, CH 2C=CH2, 2:5), 2.46 (br t, J = 12.7 Hz, 1 H, CH 2C=CH2, 3:5), 2.57 (dd, J = 12.7, 4.5 Hz, 1 H, CH 2C=CH2, 3:5), 2.75 (ddd, J = 12.0, 4.9, 2.2 Hz, 1 H, CH 2C=CH2, 2:5), 3.14 [s, 1 H, CHC(Me2), 3:5], 3.23 [s, 1 H, CHC(Me2), 2:5], 3.91 (m, 1 H, CHOH), 4.58 and 4.90 (2 × br s, 2 H, CH 2 =C, 2:5), 4.83 and 4.86 (2 × br s, 2 H, CH 2 =C, 3:5), 6.06 (d, J = 3.1 Hz, 1 H, CH=CO, 3:5), 6.08 (d, J = 3.1 Hz, 1 H, CH=CO, 2:5), 6.26 (dd, J = 3.1, 1.8 Hz, 1 H, CH=CHO, 3:5), 6.32 (dd, J = 3.1, 1.8 Hz, 1 H, CH=CHO, 2:5), 7.29 (d, J = 1.8 Hz, 1 H, =CHO, 3:5), 7.34 (d, J = 1.8 Hz, 1 H, =CHO, 2:5). 13C NMR (100 MHz, CDCl3): δ = 22.5, 28.1, 28.7, 30.3 (4 q, Me), 35.5 [s, C(Me)2, major], 36.1 [s, C(Me)2, minor], 41.8 (t, CH2C=, major), 44.4 [t, CH2C(Me)2, major], 45.5 (t, CH2C=, minor), 50.7 [t, CH2C(Me)2, minor], 53.6 [2 d, CHC(Me)2], 67.6 (d, CHO, minor), 67.9 (d, CHO, major), 106.4 (d, CH=CO, major), 108.2 (d, CH=CO, minor), 109.9 (2 d, CH=CHO), 111.9 (t, CH2=C, minor), 113.0 (t, CH2=C, major), 140.7 (d, =CHO, major), 140.9 (d, =CHO, minor), 144.4 and 145.0 (2 s, C=CH2), 154.0 (s, =CO, minor), 156.3 (s, =CO, major). GCMS (EI, 70 eV, cis-diastereomer, major): m/z (%) = 206 (18), 188 (66), 173 (36), 145 (26), 122 (35), 121 (100), 107 (22), 93 (34), 91 (34), 77 (28), 41 (36), 39 (39). GCMS (EI, 70 eV, trans-diastereomer, minor): m/z (%) = 206 (57), 188 (38), 173 (67), 145 (33), 122 (33), 121 (100), 107 (23), 93 (37), 91 (39), 77 (33), 41 (42), 39 (47). GCMS (CI+, MeCN): m/z = 207 [MH+], 189, 161, 139, 121, 95, 65. HRMS (EI): m/z calcd for C13H18O2: 206.1307. Found: 206.1313.