References and Notes
1 Roussakis C, Bergé JP, Baud JP, Chevolot L, and Durand P. inventors; WO 0044718 A1, 20000803.
; Chem. Abstr. 2000, 133, 134246
2
Bergé JP.
Bourgougnon N.
Carbonnelle D.
Le Bert V.
Tomasoni C.
Durand P.
Roussakis C.
Anticancer Res.
1997,
17:
2115
3 The preparation of aldehyde 2 from cyclohexane-1,4-diol will be reported in a forthcoming full paper.
4a
Nagpal A.
Unny R.
Joshi YC.
Heterocycl. Commun.
2001,
32:
589
4b
Simoni D.
Invidiata FP.
Rondanin R.
Grimaudo S.
Cannizzo G.
Barbusca E.
Porretto F.
D’Alessandro N.
Tolomeo M.
J. Med. Chem.
1999,
42:
4961
4c
Alekseev VV.
Zelinin KN.
Yakimovich SI.
Russ. J. Org. Chem.
1995,
31:
705
4d
Ellis GP.
The Chemistry of Heterocyclic Compounds, In Chromanones and Chromones
Vol. 33:
Ellis GP.
J. Wiley and Sons;
USA:
1977.
p.495
4e
Raston CL.
Salem G.
J. Chem. Soc., Chem. Commun.
1984,
1702
4f
Buchanan JG.
Sable HZ. In Selective Organic Transformations
Vol. 2:
Thyagarajan BS.
Wiley-Interscience;
New York:
1972.
p.1
5
Garnovskii AD.
Kharixov BI.
Blanco LM.
Garnovskii DA.
Burlov AS.
Vasilchenko IS.
Bondarenko GI.
J. Coord. Chem.
1999,
46:
365
6a
Beck AK.
Hoekstra MS.
Seebach D.
Tetrahedron Lett.
1977,
18:
1187
6b
Tang Q.
Sen SE.
Tetrahedron Lett.
1998,
39:
2249
6c
Katritzky AR.
Pastor A.
J. Org. Chem.
2000,
65:
3679
6d
Le Roux C.
Mandrou S.
Dubac J.
J. Org. Chem.
1996,
61:
3885 ; and references cited therein
For recent references, see:
6e
Wiles C.
Watts P.
Haswell SJ.
Pombo-Villar E.
Tetrahedron Lett.
2002,
43:
2945
6f
Kel’in AV.
Curr. Org. Chem.
2003,
7:
1
7
Ballini R.
Bartoli G.
Synthesis
1993,
965
8
Fargeas V.
Baalouch M.
Metay E.
Baffreau J.
Ménard D.
Gosselin P.
Bergé J.-P.
Barthomeuf C.
Lebreton J.
Tetrahedron
2004,
60:
10359
9
Sondheimer F.
Amiel Y.
Gaoni Y.
J. Am. Chem. Soc.
1961,
84:
270
10
Stacy GW.
Mikulec RA.
Org. Synth., Coll. Vol. IV
1963,
13
11
Nishizawa M.
Skwarczynski M.
Imagawa H.
Sugihara T.
Chem. Lett.
2002,
12
12 The red form of mercuric oxide was used although Nishizawa et al. (see ref. 11) described the reaction with the yellow form.
13
Typical Experimental Procedure for the Synthesis of Aldehydes 4 and 5 and Furan 11.
Tf2O (8 µL, 0.046 mmol, 0.11 equiv) and TMU (11 µL, 0.092 mmol, 0.22 equiv) were added in succession at r.t. to a stirred suspension of mercuric oxide (red, 10 mg, 0.046 mmol, 0.11 equiv) in dry MeCN (1 mL). After 10 min, a solution of homopropargylic alcohol 3 (132 mg, 0.41 mmol, 1 equiv) in dry CH2Cl2 (0.5 mL) was added, immediately followed by H2O (22 µL, 1.22 mmol, 3 equiv) and the mixture was stirred 24 h at r.t. After addition of a 1:1 mixture of sat. aq NaHCO3 and brine (2 mL), the mixture was extracted with EtOAc (4 × 10 mL). The combined organic phases were washed with a 10% HCl solution (10 mL), dried over anhyd Na2SO4 and the solvent was evaporated. Purification by flash chromatography (elution with cyclohexane-EtOAc, 9:1 to 6:4) afforded OTBS-protected aldehydes (13 mg, 10%, partly separated) and unprotected aldehydes 4 and 5 (28 mg, 33%, partly separated), as colorless oils.
Analytical data for aldehyde 4 (ca. 1:2 Z:E mixture): R
f
= 0.40 (eluent: cyclohexane-EtOAc, 6:4). IR (film): 3407, 2953, 2922, 2858, 1667,1458, 1364, 1190, 1117, 1048, 909, 877, 834 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.00 and 1.03 [2 s, 6 H, (Me)2-C, 1:3], 1.02 and 1.05 [2 s, 6 H, (Me)2-C, 2:3], 1.26 (br s, 1 H, OH), 1.35 (m, 1 H), 1.78 (m, 2 H), 1.91 (br s, 3 H, Me-C=, 1:3), 2.11 (br s, 3 H, Me-C=, 2:3), 2.19 (m, 1 H), 2.82 (br s, 2 H, CH
2
CH=, 2:3), 3.21 (br s, 2 H, CH
2
CH=, 1:3), 3.98 (m, 1 H, CHOH), 5.26 (br s, 1 H, CH2CH=), 5.88 (d, J = 8.1 Hz, 1 H, CH-CHO, 2:3), 5.99 (d, J = 8.1 Hz, 1 H, CHCHO, 1:3), 9.95 (d, J = 8.1 Hz, 1 H, CHO, 1:3), 9.99 (d, J = 8.1 Hz, 1 H, CHO, 2:3). 13C NMR (100 MHz, CDCl3): δ = 17.2 (q), 24.8 (q), 29.5 (q), 29.6 (q), 29.8 (q), 31.27 (q), 31.31 (q), 34.4 (s), 34.5 (s), 37.7 (t), 37.9 (t), 40.2 (t), 46.0 (t), 48.6 (t), 65.99 (d), 66.03 (d), 128.2 (s), 128.6 (d), 128.7 (s), 129.8 (d), 135.2 (d), 136.1 (d), 161.5, 161.8 (s), 190.9 (d), 191.4 (d). GCMS (EI, 70 eV, minor diastereomer): m/z (%) = 208 (5), 190 (38), 175 (79), 157 (64), 137 (84), 119 (56), 105 (80), 91 (85), 77 (55), 43 (50), 41 (90), 39 (100). GCMS (EI, 70 eV, major diastereomer): m/z (%) = 208 (2), 175 (36), 157 (37), 147 (69), 119 (45), 107(100), 105(68), 91 (46), 79 (33), 55 (49), 41 (64), 39 (68). GCMS (CI+, i-C4H10, both diastereomers): m/z = 209 [MH+], 191, 173, 163, 147, 109, 95, 69. HRMS (EI): m/z calcd for C13H20O2: 208.1463; found: 208.1454. Analytical data for OTBS-protected aldehyde 5: R
f
= 0.52 (eluent: PE-Et2O, 9:1). IR (film): 2955, 2928, 2857, 1727, 1643, 1471, 1381, 1360, 1256, 1080, 836, 775, 666 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.06 [s, 6 H (Me)2-Si], 0.88 (s, 9 H, t-Bu-Si), 0.97 and 0.99 [2 s, 2 × 3H, (Me)2-C], 1.34 and 1.62 [2 m, 2 H, CH
2
-C(Me)2], 1.79 and 2.04 (2 m, 2 H, CH
2
C=CH2), 2.68 (br s, 2 H, CH
2
CH=C), 3.01 (br s, 2 H, CH
2
CH=O), 3.90 (dddd, J = 11.3, 9.1, 5.5, 3.6 Hz, 1 H, CHOSi), 4.95 (br s, 1 H, CH
2=C), 5.06 (br s, 1 H, =CHCH2), 5.15 (br s, 1 H, CH
2=C), 9.59 (t, J = 2.5 Hz, 1 H, CHO). 13C NMR (100 MHz, CDCl3): δ = -4.6 (q), 18.2 (s), 26.0 (q), 29.5 (q), 31.2 (q), 34.2 (s), 38.0 (t), 45.5 (t), 46.4 (t), 49.9 (t), 66.8 (d), 116.6 (t), 129.4 (s), 134.9 (d), 138.7 (s), 199.9 (d). HRMS (ESI): m/z calcd for C19H34O2NaSi: 345.2226. Found: 345.2221.
14
Larock RC.
Harrison LW.
J. Am. Chem. Soc.
1984,
106:
4218
15 Depending on reaction time, small amounts of TBS-protected alcohols 4 and 5 were also isolated.
16
Sniady A.
Wheeler KA.
Dembinski R.
Org. Lett.
2005,
7:
1769
17
Hashmi ASK.
Bats JW.
Choi J.-H.
Schwarz L.
Tetrahedron Lett.
1998,
39:
7491
18 The result is the same when the crude propargylic ketone 9 or the purified allene 10 is used for the hydration reaction.
19 Analytical data for 11 (ca. 3:2 mixture of cis:trans diastereoisomers): R
f
= 0.34 (eluent: PE-Et2O, 6:4). IR (film): 3352, 2954, 2926, 2866, 1715, 1647, 1588, 1501, 1461, 1364, 1258, 1149, 1044, 1015, 899, 799, 730, 597 cm-1. 1H NMR (400 MHz, CDCl3): δ = 0.80, 0.86, 0.98, 0.99 (4 × s, 3 H, Me), 1.42 [br t, J = 12.5 Hz, 1 H, CH
2C(Me)2, 2:5], 1.61 [ddt, J = 12.7, 4.7, 1.3 Hz, 1 H, CH
2C(Me)2, 3:5], 1.75 (br s, 1 H, OH), 1.80 [br t, J = 12.7 Hz, 1 H, CH
2C(Me)2, 3:5], 1.87 [ddd, J = 12.5, 4.4, 2.1 Hz, 1 H, CH
2C(Me)2, 2:5], 2.07 (br t, J = 12.0 Hz, 1 H, CH
2C=CH2, 2:5), 2.46 (br t, J = 12.7 Hz, 1 H, CH
2C=CH2, 3:5), 2.57 (dd, J = 12.7, 4.5 Hz, 1 H, CH
2C=CH2, 3:5), 2.75 (ddd, J = 12.0, 4.9, 2.2 Hz, 1 H, CH
2C=CH2, 2:5), 3.14 [s, 1 H, CHC(Me2), 3:5], 3.23 [s, 1 H, CHC(Me2), 2:5], 3.91 (m, 1 H, CHOH), 4.58 and 4.90 (2 × br s, 2 H, CH
2
=C, 2:5), 4.83 and 4.86 (2 × br s, 2 H, CH
2
=C, 3:5), 6.06 (d, J = 3.1 Hz, 1 H, CH=CO, 3:5), 6.08 (d, J = 3.1 Hz, 1 H, CH=CO, 2:5), 6.26 (dd, J = 3.1, 1.8 Hz, 1 H, CH=CHO, 3:5), 6.32 (dd, J = 3.1, 1.8 Hz, 1 H, CH=CHO, 2:5), 7.29 (d, J = 1.8 Hz, 1 H, =CHO, 3:5), 7.34 (d, J = 1.8 Hz, 1 H, =CHO, 2:5). 13C NMR (100 MHz, CDCl3): δ = 22.5, 28.1, 28.7, 30.3 (4 q, Me), 35.5 [s, C(Me)2, major], 36.1 [s, C(Me)2, minor], 41.8 (t, CH2C=, major), 44.4 [t, CH2C(Me)2, major], 45.5 (t, CH2C=, minor), 50.7 [t, CH2C(Me)2, minor], 53.6 [2 d, CHC(Me)2], 67.6 (d, CHO, minor), 67.9 (d, CHO, major), 106.4 (d, CH=CO, major), 108.2 (d, CH=CO, minor), 109.9 (2 d, CH=CHO), 111.9 (t, CH2=C, minor), 113.0 (t, CH2=C, major), 140.7 (d, =CHO, major), 140.9 (d, =CHO, minor), 144.4 and 145.0 (2 s, C=CH2), 154.0 (s, =CO, minor), 156.3 (s, =CO, major). GCMS (EI, 70 eV, cis-diastereomer, major): m/z (%) = 206 (18), 188 (66), 173 (36), 145 (26), 122 (35), 121 (100), 107 (22), 93 (34), 91 (34), 77 (28), 41 (36), 39 (39). GCMS (EI, 70 eV, trans-diastereomer, minor): m/z (%) = 206 (57), 188 (38), 173 (67), 145 (33), 122 (33), 121 (100), 107 (23), 93 (37), 91 (39), 77 (33), 41 (42), 39 (47). GCMS (CI+, MeCN): m/z = 207 [MH+], 189, 161, 139, 121, 95, 65. HRMS (EI): m/z calcd for C13H18O2: 206.1307. Found: 206.1313.
20
Zeni G.
Larock RC.
Chem. Rev.
2004,
104:
2285 ; and references therein
21a
Marshall JA.
Bartley GS.
J. Org. Chem.
1994,
59:
7169
21b
Aucagne V.
Amblard F.
Agrofoglio LA.
Synlett
2004,
2406
22a
Hashmi ASK.
Schwarz L.
Choi J.-H.
Frost TM.
Angew. Chem. Int. Ed.
2000,
39:
2285
22b
Yao T.
Zhang X.
Larock RC.
J. Am. Chem. Soc.
2004,
126:
11164
23
Kel’in AV.
Gevorgyan V.
J. Org. Chem.
2002,
67:
95
24
Barluenga J.
Vazquez-Villa H.
Ballesteros A.
Gonzalez JM.
J. Am. Chem. Soc.
2003,
125:
9028
25a
Brown CD.
Chong JM.
Shen L.
Tetrahedron
1999,
55:
14233
25b
Obrecht D.
Helv. Chim. Acta
1989,
72:
447
26a
Arcadi A.
Marinelli F.
Pini E.
Rossi E.
Tetrahedron Lett.
1996,
37:
3387
26b
Vieser R.
Eberbach W.
Tetrahedron Lett.
1995,
36:
4405
27
Imagawa H.
Kurisaki T.
Nishizawa M.
Org. Lett.
2004,
6:
3679
28a
Hashmi ASK.
Schwarz L.
Bats JW.
J. Prakt. Chem.
2000,
342:
40
28b
Hashmi ASK.
Schwarz L.
Bolte M.
Tetrahedron Lett.
1998,
39:
8969