Subscribe to RSS
DOI: 10.1055/s-2005-923593
A Concise Synthesis of (S)-γ-Fluoroleucine Ethyl Ester
Publication History
Publication Date:
23 December 2005 (online)
Abstract
We report herein a six-step, chromatography-free, through-process for the asymmetric synthesis of (S)-γ-fluoroleucine ethyl ester sulfate salt (6) that proceeds in 25% overall yield from inexpensive ethyl glyoxylate. This approach features a Ti/Zn-catalyzed glyoxylate-ene reaction-olefin hydrofluorination-amine alkylation as key steps.
Key words
(S)-γ-fluoroleucine ethyl ester - asymmetric synthesis - enantioselective glyoxylate-ene reaction - olefin hydrofluorination - amine alkylation
- For reviews, see:
-
1a
Shimizu M.Hiyama T. Angew. Chem. Int. Ed. 2005, 44: 214 -
1b
Mikami K.Itoh Y.Yamanaka M. Chem. Rev. 2004, 104: 1 -
1c
Iseki K. Tetrahedron 1998, 54: 13887 -
1d
Filler R.Kobayashi Y.Yagupolskii LM. In Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications Elsevier Biomedical Press; Amsterdam: 1993. -
1e
Welch JT.Eswarakrishan S. In Fluorine in Bioorganic Chemistry Wiley; New York: 1991. -
1f
Welch JT. Tetrahedron 1987, 43: 3123 -
1g
Mann J. Chem. Soc. Rev. 1987, 16: 381 -
1h
Kollonitsch J. In Biomedical Aspects of Fluorine ChemistryFiller R.Kobayashi Y. Elsevier Biomedical Press; Amsterdam: 1982. -
2a
Qiu X.-L.Meng W.-D.Qing F.-L. Tetrahedron 2004, 60: 6711 -
2b
Sutherland A.Willis CL. Nat. Prod. Rep. 2000, 17: 621 -
3a
Tranel F.Fröhlich R.Haufe G. J. Fluorine Chem. 2005, 126: 557 -
3b For a review on γ-fluoro-α-amino acids synthesis see:
Haufe G.Kröger S. Amino Acids 1996, 11: 409 -
4a
Kröger S.Haufe G. Amino Acids 1997, 12: 363 -
4b
Haufe G.Laue KW.Triller MU. Tetrahedron 1998, 54: 5929 -
5a
Shendage DM.Fröhlich R.Bergander K.Haufe G. Eur. J. Org. Chem. 2005, 719 -
5b
Laue KW.Kröger S.Wegelius E.Haufe G. Eur. J. Org. Chem. 2000, 3737 - 6
Papageorgiou C.Borer X.French RR. Bioorg. Med. Chem. Lett. 1994, 4: 267 - 7
Limanto J.Shafiee A.Devine PN.Upadhyay V.Desmond RA.Foster BR.Gauthier DR.Reamer RA.Volante RP. J. Org. Chem. 2005, 70: 2372 - 8
Truong VL.Gauthier JY.Boyd M.Roy B.Scheigetz J. Synlett 2005, 1279 - For reviews on the ene reaction see: ref. 1c and:
-
9a
Mikami K.Shimizu M. Chem. Rev. 1992, 92: 1021 - For Cu-catalyzed carbonyl-ene reaction see:
-
9b
Evans DA.Tregay SW.Burgey CS.Paras NA.Vojkovsky T. J. Am. Chem. Soc. 2000, 122: 7936 -
9c
Evans DA.Johnson JS.Burgey CS.Campos KR. Tetrahedron Lett. 1999, 40: 2879 -
9d
Evans DA.Burgey CS.Paras NA.Vojkovsky T.Tregay SW. J. Am. Chem. Soc. 1998, 120: 5824 -
9e
Evans DA.Peterson GS.Johnson JS.Barnes DM.Campos KR.Woerpel KA. J. Org. Chem. 1998, 63: 4541 -
9f For a discussion on the Cu(II)-catalyzed carbonyl-ene reaction mechanism see:
Morao I.McNamara JP.Hillier IH. J. Am. Chem. Soc. 2003, 125: 628 -
10a
Mikami K.Terada M.Nakai T. J. Am. Chem. Soc. 1990, 112: 3949 -
10b
Mikami K.Terada M.Nakai T. J. Am. Chem. Soc. 1989, 111: 1940 -
10c
Mikami K.Terada M.Narisawa S.Nakai T. In Organic Syntheses Vol. 71:Overman LE. Wiley; New York: 1993. -
10d
Brown PA, andHans H. inventors; Eur. Pat. Appl. EP 0816341. ; Chem. Abstr. 1998, 128, 140701 - For reviews on the Ti-catalyzed carbonyl-ene reaction see ref. 1b and:
-
10e
Mikami K. Pure Appl. Chem. 1996, 68: 639 -
10f
Mikami K.Terada M.Narisawa S.Nakai T. Synlett 1992, 255 - For a discussion on the Ti-catalyzed carbonyl-ene reaction transition state see:
-
10g
Corey EJ.Barnes-Seeman D.Lee TW.Goodman SN. Tetrahedron Lett. 1997, 38: 6513 - For a discussion on the role of molecular sieves in the Ti-catalyzed carbonyl-ene reaction see:
-
10h
Terada M.Matsumoto Y.Nakamura Y.Mikami K. Inorg. Chim. Acta 1999, 296: 267 -
10i
Terada M.Matsumoto Y.Nakamura Y.Mikami K. J. Mol. Catal. A: Chem. 1998, 132: 165 -
10j
Mikami K.Terada M.Matsumoto Y.Tanaka M.Nakamura Y. Microporous Mesoporous Mater. 1998, 21: 461 -
10k
Terada M.Matsumoto Y.Nakamura Y.Mikami K. Chem. Commun. 1997, 281 - 11
Olah GA.Welch JT.Vankar YD.Nojima M.Kerekes I.Olah JA. J. Org. Chem. 1979, 44: 3872 - Poly-4-vinylpyridinium poly(hydrogen fluoride) (PVPHF), HF·melamine, Ishikawa’s reagent, HF·NEt3, HF·collidine, and HF·H2O afforded lower conversion and yield. For references on the first five reagents see:
-
12a
Olah GA.Li X.-Y. Synthesis 1990, 267 -
12b
Yoneda N.Abe T.Fukuhara T.Suzuki A. Chem. Lett. 1983, 1135 -
12c
Watanabe S.Fujita T.Usui Y.Kimura Y.Kitazume T. J. Fluorine Chem. 1986, 31: 135 -
12d
McClinton MA. Aldrichimica Acta 1995, 28: 31 -
12e
Wozney YV.Kalicheva IS.Galoyan AA. Bioorg. Khim. 1981, 7: 406 - 13
Effenberger F.Burkard U.Willfahrt J. Liebigs Ann. Chem. 1986, 314 -
14a
Pearlman WM. Tetrahedron Lett. 1967, 17: 1663 -
14b
Bernotas RC.Cube RV. Synth. Commun. 1990, 20: 1209 -
14c
Yoshida K.Nakajima S.Wakamatsu T.Ban Y.Shibasaki M. Heterocycles 1988, 27: 1167 - 15
Dijkgraaf C.Rousseau JPG. Spectrochimica Acta, Part A 1968, 24: 1213
References and Notes
Spectral data for compound 6: [α]D 20 +9.9 (c 0.52, EtOH) {lit.7: [α]D 25 +9.8 (c 0.52, EtOH)}; mp 104-105 °C. IR (NaCl, thin film): ν = 3419 (br), 2986, 2942, 1742, 1520, 1377, 1291, 1204, 1171, 1050 cm-1. 1H NMR (500 MHz, DMSO-d 6): δ = 8.34 (br, 3 H), 4.21 (q, J = 7.1 Hz, 2 H), 4.17 (app t, J = 6.7 Hz, 1 H), 2.21 (ddd, J = 6.6, 15.0, 22.9 Hz, 1 H), 2.09 (ddd, J = 6.6, 15.0, 20.8 Hz, 1 H), 1.41 (d, J = 21.6 Hz, 3 H), 1.41 (d, J = 21.6 Hz, 3 H), 1.24 (t, J = 7.1 Hz, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 170.0, 95.1 (d, J = 165.5 Hz), 62.5, 49.5 (d, J = 1.1 Hz), 41.4 (d, J = 21.8 Hz), 26.9 (d, J = 23.6 Hz), 26.8 (d, J = 23.7 Hz), 14.3. 19F NMR (375 MHz, DMSO-d 6): δ = -138.3. HRMS (ES): m/z calcd for [C8H16FNO2 + Na]+: 200.1063; found: 200.1067. Enantiomeric excess was determined by HPLC with a 4.6 mm × 15.0 cm Crownpack CR(+) column (0.3% HClO4 in H2O pH = 1.5-1.6, hold 20 min, 1 mL/min, 205 nm, 25 °C; R enantiomer t R = 5.6 min; S enantiomer t R = 7.6 min; 96% ee.