Int J Sports Med 2006; 27(11): 900-904
DOI: 10.1055/s-2006-923791
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Reliability of Repeated Sprint Exercise in Non-Motorised Treadmill Ergometry

M. G. Hughes1 , M. Doherty1 , R. J. Tong1 , T. Reilly1 , N. T. Cable1
  • 1School of Sport, PE & Recreation, University of Wales Institute, Cardiff, United Kingdom
Further Information

Publication History

Accepted after revision: December 5, 2005

Publication Date:
30 May 2006 (online)

Abstract

Although repeated sprint tests are relatively common, there have been few investigations of repeated sprint exercise using non-motorised treadmill ergometry. The purpose of this study was to determine the reliability of a repeated sprint procedure using this apparatus. Ten healthy, active males, performed three repeated sprint tests (six repetitions of 6 s sprints with 30 s recovery) on three separate occasions. Performance as determined by maximal speed, average force production, and fatigue were compared across the three trials. Maximal speed and average force were not significantly different between visits (p < 0.05) and a variety of reliability measures suggested good agreement (e.g., coefficient of variations no more than 5 %). The fatigue indices for maximal speed and for average force were generally less reliable (coefficients of variation around 30 % in both cases). In conclusion, measures of performance (maximal speed and average force) can provide reliable results in a repeated sprint protocol but the reliability of fatigue measures appears to be low.

References

  • 1 Atkinson G, Nevill A. Statistical methods for assessing measurement error (reliability) in variables relating to sports medicine.  Sports Med. 1998;  26 217-238
  • 2 Bishop D, Spencer M, Duffield R, Lawrence S. The validity of a repeated sprint ability test.  J Sci Med Sport. 2001;  4 19-29
  • 3 Bishop D, Edge J, Davis C, Goodman C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability.  Med Sci Sports Exerc. 2004;  36 807-813
  • 4 Bishop D, Spencer M. Determinants of repeated sprint ability in well-trained team-sport athletes and endurance-trained athletes.  J Sports Med Phys Fitness. 2004;  44 1-7
  • 5 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 6 Capriotti P V, Sherman W M, Lamb D R. Reliability of power output during intermittent high-intensity cycling.  Med Sci Sports Exerc. 1999;  31 913-915
  • 7 Cheetham M E, Williams C, Lakomy H. A laboratory running test: metabolic responses of sprint and endurance trained athletes.  Br J Sports Med. 1985;  19 81-84
  • 8 Dawson B, Ackland T, Roberts C, Lawrence S. The phosphate recovery test revisited.  Sports Coach. 1991;  14 12-17
  • 9 Dawson B, Fitzsimons M, Ward D. The relationship of repeated sprint ability to aerobic power and performance measures of anaerobic work capacity and power.  Aust J Sci Med Sport. 1993;  25 88-93
  • 10 Fitzsimons M, Dawson B, Ward D, Wilkinson A. Cycling and running tests of repeated sprint ability.  Aust J Sci Med Sport. 1993;  25 82-87
  • 11 Glaister M, Stone M H, Stewart A M, Hughes M G, Moir G L. Reliability of power output during short-duration maximal-intensity intermittent cycling.  J Strength Cond Res. 2003;  17 781-784
  • 12 Glaister M, Stone M H, Stewart A M, Hughes M G, Moir G L. The reliability and validity of fatigue measures duration short-duration maximal intensity intermittent cycling.  J Strength Cond Res. 2004;  18 459-462
  • 13 Holmyard D J, Cheetham M E, Lakomy H KA, Williams C. Effect of recovery duration on performance during multiple treadmill sprints. Reilly T, Lees A, Davids K, Murphy W Science and Football. London; E & FN Spo 1988: 134-142
  • 14 Hopkins W. Measures of reliability in sports medicine and science.  Sports Med. 2000;  30 1-15
  • 15 Hopkins W. Calculating confidence limits (Excel spreadsheet). Available from: http://sportsci.org/resources/stats (accessed 21 Feb. 2005). 
  • 16 Jaskolska A, Goosens P, Veenstra B, Jaskolski A, Skinner J S. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.  Int J Sports Med. 1999;  20 192-197
  • 17 Lakomy H KA. An ergometer for measuring the power generated during sprinting.  J Physiol. 1984;  354
  • 18 Lakomy H KA. The use of a non-motorized treadmill for analysing sprint performance.  Ergonomics. 1987;  30 627-637
  • 19 Nicholas C W, Nuttall F E, Williams C. The Loughborough Intermittent Shuttle Test: a field test that simulates the activity pattern of soccer.  J Sports Sci. 2000;  18 97-104
  • 20 Schabort E J, Hawley J A, Hopkins W G, Blum H. High reliability of performance of well-trained rowers on a rowing ergometer.  J Sports Sci. 1999;  17 627-632
  • 21 Sutton N C, Childs D J, Bar-Or O, Armstrong N. A nonmotorized treadmill test to assess children's short-term power output.  Pediat Exerc Sci. 2000;  12 91-100
  • 22 Tomlin D L, Wenger H A. The relationships between aerobic fitness, power maintenance and oxygen consumption during intense exercise.  J Sci Med Sport. 2002;  5 194-203
  • 23 Tong R J, Bell W, Ball G, Winter E M. Reliability of power output measurements during repeated treadmill sprinting in rugby players.  J Sports Sci. 2001;  19 289-297
  • 24 Treble G F, Wood K, Morton A R. A phosphate decrement test for adolescent racket sport players. Reilly T, Hughes M, Lees A Science and Racket Sports. London; E & FN Spo 1994: 55-60
  • 25 Wadley G, Le Rossignol P. The relationship between repeated sprint ability and the aerobic and anaerobic energy systems.  J Sci Med Sport. 1998;  1 100-110

Michael G. Hughes

School of Sport, PE & Recreation, University of Wales Institute, Cardiff

Cyncoed Road

Cardiff

CF23 6XD United Kingdom

Phone: + 442920416473

Fax: + 44 29 20 41 67 83

Email: mghughes@uwic.ac.uk