Int J Sports Med 2007; 28(3): 211-216
DOI: 10.1055/s-2006-924218
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Monitoring 6 Weeks of Progressive Endurance Training with Plasma Glutamine

S. Kargotich1 , 2 , D. Keast1 , C. Goodman2 , C. I. Bhagat3 , D. J. L. Joske4 , B. Dawson2 , A. R. Morton2
  • 1School of Microbiology, The University of Western Australia, QE II Medical Centre, Nedlands, W. A., Australia
  • 2School of Human Movement and Exercise Science, The University of Western Australia, Crawley, W. A., Australia
  • 3Department of Clinical Haematology, The University of Western Australia, QE II Medical Centre, Nedlands, W. A., Australia
  • 4Department of Clinical Biochemistry, The University of Western Australia, QE II Medical Centre, Nedlands, W. A., Australia
Further Information

Publication History

Accepted after revision: March 30, 2006

Publication Date:
06 October 2006 (online)

Abstract

The distinction between positive and negative training adaptation is an important prerequisite in the identification of any marker for monitoring training in athletes. To investigate the glutamine responses to progressive endurance training, twenty healthy males were randomly assigned to a training group or a non-exercising control group. The training group performed a progressive (3 to 6 × 90 minute sessions per week at 70 % V·O2max) six-week endurance training programme on a cycle ergometer, while the control group did not participate in any exercise during this period. Performance assessments (V·O2max and time to exhaustion) and resting blood samples (for haemoglobin concentration, haematocrit, cortisol, ferritin, creatine kinase, glutamine, uric acid and urea analysis) were obtained prior to the commencement of training (Pre) and at the end of week 2, week 4 and week 6. The training group showed significant improvements in time to exhaustion (p < 0.01), and V·O2max (p < 0.05) at all time points (except week 2 for V·O2max), while the control group performance measures did not change. In the training group, haemoglobin concentration and haematocrit were significantly lower (p < 0.01) than pretraining values at week 2 and 4, as percentage changes in plasma volume indicated a significant (p < 0.01) haemodilution (+ 6 - 9 %) was present at week 2, 4 and 6. No changes were seen in the control group. In the training group, plasma glutamine (week 2, 4 and 6), creatine kinase (week 2 and 4), uric acid (week 2 and 4) and urea (week 2 and 4) all increased significantly from pretraining levels. No changes in cortisol or ferritin were found in the training group and no changes in any blood variables were present in the control group. Plasma glutamine was the only blood variable to remain significantly above pretraining (966 ± 32 µmol · 1-1) levels at week 6 (1176 ± 24 µmol · 1-1; p < 0.05) The elevation seen here in glutamine levels, after 6 weeks of progressive endurance training, is in contrast to previous reports of decreased glutamine concentrations in overtrained athletes. In conclusion, 6 weeks of progressive endurance training steadily increased plasma glutamine levels, which may prove useful in the monitoring of training responses.

References

  • 1 Adlercreutz H, Harkonen M, Kuoppasalmi K, Naveri H, Huhtaniemi I, Tikkanen H, Remes K, Dessypris A, Karvonen J. Effect of training on plasma anabolic and catabolic steroid hormones and their response during physical exercise.  Int J Sports Med. 1996;  17 27-28
  • 2 Allen G, Keenan D. Uric acid production and excretion with exercise.  Aust J Sci Med Sport. 1988;  20 3-6
  • 3 Ardawi M, Newsholme E. Metabolism in lymphocytes and its importance in the immune response.  Essays Biochem. 1985;  21 1-44
  • 4 Bailey D, Davies B, Castell L. Do infections and attitude illness represent a common pathophysiology? Metabolic significance of free radical mediated damage and glutamine metabolism in man.  J Physiol. 2002;  539 P 30P
  • 5 Bompa T. Periodization: Theory and Methodology of Training. 4th ed. Champaign, IL; Human Kinetics 1999
  • 6 Carroll J, Convertino V, Wood C, Graves J, Loventhal D, Pollock M. Effect of training on blood volume and plasma hormone concentrations in the elderly.  Med Sci Sport Exerc. 1995;  27 79-84
  • 7 Castell L. Glutamine Supplementation in vitro and in vivo, in exercise and in immunodepression.  Sports Med. 2003;  33 323-345
  • 8 Castell L, Poortmeno J, Newsholme E. Does glutamine have a role in reducing infections in athletes?.  Eur J Appl Physiol Occup Physiol. 1996;  73 488-491
  • 9 Convertino V. Blood volume: its adaptation to endurance training.  Med Sci Sport Exerc. 1991;  23 1338-1348
  • 10 Coyle E, Hopper M, Coggan A. Maximal oxygen uptake relative to plasma volume expansion.  Int J Sports Med. 1990;  11 116-119
  • 11 Cummings D, Wheeler G, McColl E. The effects of exercise on the reproductive function of men.  Sports Med. 1989;  7 1-17
  • 12 Dill D, Costill D. Calculation of percentage changes in volumes of red blood cells and plasma in dehydration.  J Appl Physiol. 1974;  37 247-248
  • 13 Ebbeling C, Clarkson P. The effects of exercise on reproductive function in men.  Sports Med. 1989;  7 207-234
  • 14 Fellmann N. Hormonal and plasma volume alterations following endurance exercise.  Sports Med. 1992;  13 37-49
  • 15 Fry R, Morton A, Garcia-Webb P, Keast D. Monitoring exercise stress by changes in metabolic and hormonal responses over a 24-h period.  Eur J Appl Physiol. 1991;  63 228-234
  • 16 Fry R, Morton A, Garcia-Webb P, Crawford G, Keast D. Biological responses to overload training in endurance sports.  Eur J Appl Physiol. 1992;  64 335-344
  • 17 Fry R, Lawrence S, Morton A, Schreiner A, Polglaze T, Keast D. Monitoring training stress in endurance sports using biological parameters.  Clin J Sports Med. 1993;  3 6-13
  • 18 Halson S, Lancaster G, Jeukendrup A, Gleeson M. Immunological responses to overreaching in cyclists.  Med Sci Sports Exerc. 2003;  35 854-861
  • 19 Harkness R, Simmonds R, Coade S. Purine transport and metabolism in man: the effect of exercise on concentrations of purine bases, nucleosides and nucleotides in plasma, urine, leucocytes and erythrocytes.  Clin Sci. 1983;  64 333-340
  • 20 Hellsten Y. Xanthine dehydrogenase and purine metabolism in man.  Acta Physiol Scand. 1994;  621 1-73
  • 21 Henriksson J. Muscle fuel selection: effects of exercise and training.  Proc Nutr Soc. 1995;  54 125-138
  • 22 Jenkins R. Free radical chemistry relationship to exercise.  Sports Med. 1988;  5 156-170
  • 23 Keast D, Arstein D, Harper W, Fry R, Morton A. Depression of plasma glutamine following exercise stress and its possible influence on the immune system.  Med J Aust. 1995;  162 15-18
  • 24 Keast D, Harper W, Rowbottom D, Greig J, Kargotich S, McBride S. A simple bacterial bio assay for the measurement of L-glutamine.  Ann Clin Biochem. 1998;  35 110-114
  • 25 Kirwin J, Costill D, Houmard J, Mitchell J, Flynn M, Fink W. Changes in selected blood measures during repeated days of intense training and carbohydrate control.  Int J Sports Med. 1990;  11 362-366
  • 26 Kuipers H. Exercise-induced muscle damage.  Int J Sports Med. 1994;  15 132-135
  • 27 Lehmann M, Gastmann U, Petersoen K, Bachl N, Seidel A, Khalaf A, Fischer S, Keul J. Training - overtraining: performance and hormone levels, after a defined increase in training volume versus intensity in experienced middle- and long-distance runners.  Br J Sports Med. 1992;  26 233-242
  • 28 Mackinnon L, Hooper S. Plasma glutamine and upper respiratory tract infection during intensified training in swimmers.  Med Sci Sports Exerc. 1996;  28 285-290
  • 29 MacLean D, Spriet L, Graham T. Plasma amino acid and ammonia responses to altered dietary intakes prior to prolonged exercise in humans.  Can J Physiol Pharmacol. 1992;  70 420-427
  • 30 Mayers E, Smith O, Fredericks W, McKinney M. The isolation and characterisation of glutamine-requiring strains of Escherichia coli K12.  Mol Gen Genet. 1975;  137 131-142
  • 31 Newsholme E, Parry-Billings M. Properties of glutamine release from muscle and its importance for the immune system.  J Parent Ent Nutr. 1990;  14 S63-S67
  • 32 Nieman D. Exercise, upper respiratory tract infection, and the immune system.  Med Sci Sports Exerc. 1994;  26 128-139
  • 33 Parry-Billings M, Budgett R, Koutedakis Y, Blomstrand E, Brooks S, Williams C, Calder P, Pilling S, Baigrie R, Newsholme E. Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system.  Med Sci Sports Exerc. 1992;  24 1353-1358
  • 34 Porter R, Whelan J. Human Muscle Fatigue. Ciba Foundation Symposium 82. London; Pitman Medical 1981
  • 35 Pyne D. Uric acid as an indicator of training stress.  Sport Health. 1993;  11 26-27
  • 36 Pyne D. Exercise-induced muscle damage and inflammation: a review.  Aus J Sci Med Sport. 1994;  26 49-58
  • 37 Rohde T, Maclean D, Pederson B. Effect of glutamine supplementation on changes in the immune system induced by repeated exercise.  Med Sci Sports Exerc. 1998;  30 856-862
  • 38 Rowbottom D, Keast D, Goodman C, Morton A. The haematological, biochemical and immunological profile of athletes suffering from the overtraining syndrome.  Eur J Appl Physiol. 1995;  70 502-509
  • 39 Rowbottom D, Keast D, Morton A. The emerging role of glutamine as an indicator of exercise stress and overtraining.  Sports Med. 1996;  21 80-97
  • 40 Rowbottom D, Keast D, Garcia-Webb P, Morton A. Training adaptation and biological changes amongst elite male triathletes using biological parameters.  Med Sci Sports Exerc. 1997;  29 1233-1239
  • 41 Smith D, Norris S. Changes in glutamine and glutamate concentrations for tracking training tolerance.  Med Sci Sports Exerc. 2000;  32 684-689
  • 42 Stone M, Keith R, Kearney J, Fleck S, Wilson G, Tripplett N. Overtraining: a review of the signs, symptoms and possible causes.  J Appl Sport Sci Res. 1991;  5 35-50
  • 43 Triffletti P, Litchfield P, Clarkson P, Byrnes W. Creatine kinase and muscle soreness after repeated isometric exercise.  Med Sci Sports Exerc. 1988;  20 242-248
  • 44 Viru A. Mobilisation of structural proteins during exercise.  Sports Med. 1987;  4 95-128
  • 45 Volek J, Kraemer W, Rubin M. L-tartrate supplementation favourably affects markers of recovery from exercise stress.  Am J Physiol Endocrinol Metab. 2002;  282 E474-E482

Associate Professor Brian Dawson

School of Human Movement and Exercise Science
The University of Western Australia

35 Stirling Highway

Crawley, W. A. 6009

Australia

Phone: + 61 8 64 88 22 76

Fax: + 61 8 64 88 10 39

Email: bdawson@cyllene.uwa.edu.au