Int J Sports Med 2007; 28(4): 273-280
DOI: 10.1055/s-2006-924336
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Physiological Determinants of Time to Exhaustion during Intermittent Treadmill Running at vV·O2max

A. W. Midgley1 , L. R. McNaughton1 , S. Carroll1
  • 1Department of Sport, Health and Exercise Science, University of Hull, Hull, UK
Further Information

Publication History

Accepted after revision: May 20, 2006

Publication Date:
06 October 2006 (online)

Abstract

Previous studies have reported large between-subject variations in the time to exhaustion during intermittent running at the velocity at V·O2max (vV·O2max). This study aimed to determine which physiological factors contribute to this variability. Thirteen male runners (age 38.9 ± 8.7 years) each completed five treadmill running tests; two incremental tests to determine V·O2max, vV·O2max, the lactate threshold velocity (vLT) and the running velocity-V·O2 relationship; the third test to determine the time to exhaustion during continuous running at vV·O2max (tlimcont); the fourth to determine the maximal accumulated oxygen deficit (MAOD); the fifth to determine the time to exhaustion during intermittent running at vV·O2max (tlimint). Relief intervals during the intermittent test were run at 70 % vV·O2max. The vLT‐vV·O2max difference was significantly correlated with tlimint (r = - 0.70; p = 0.007). The correlation coefficient increased to r = - 0.83 (p < 0.001) when the difference between the relief interval velocity and the vLT was deducted from the vLT‐vV·O2max difference (theoretically representing the net depletion of the MAOD during each work/relief interval cycle). The main finding of this study was that 49 % of the variance in tlimint was explained by the vLT‐vV·O2max difference, compared to 74 % for tlimcont. However, a further 20 % of unique variance in tlimint could be explained with the inclusion of the relief interval velocity-vLT difference. Theoretically, runners with the largest relief interval velocity-vLT difference will replete their anaerobic capacity to a greater extent during each relief interval, thereby increasing time to exhaustion.

References

  • 1 Åstrand I, Åstrand P O, Christensen E H, Hedman R. Intermittent muscular work.  Acta Physiol Scand. 1960;  48 448-453
  • 2 Bangsbo J. Oxygen deficit: a measure of the anaerobic energy production during intense exercise?.  Can J Appl Physiol. 1996;  21 350-363
  • 3 Billat V, Beillot J, Jan J, Rochcongar P, Carre F. Gender effect on the relationship of time limit at 100 % V·O2max with other bioenergetic characteristics.  Med Sci Sports Exerc. 1996;  28 1049-1055
  • 4 Billat V L, Binse V, Petit B, Koralsztein J P. High-level runners are able to maintain a V·O2 steady state below V·O2max in an all-out run over their critical velocity.  Arch Physiol Biochem. 1998;  106 38-45
  • 5 Billat V L, Bocquet V, Slawinski J, Lafitte L, Demarle A, Chassaing P, Koralsztein J P. Effect of a prior intermittent run at vV·O2max on oxygen uptake kinetics during an all-out severe run in humans.  J Sports Med Phys Fitness. 2000;  40 185-194
  • 6 Billat V L, Flechet B, Petit B, Muriaux G, Koralsztein J P. Interval training at V·O2max: effects on aerobic performance and overtraining markers.  Med Sci Sports Exerc. 1999;  31 156-163
  • 7 Billat V L, Lepretre P M, Heubert R P, Koralsztein J P, Gazeau F P. Influence of acute moderate hypoxia on time to exhaustion in unacclimatised runners.  Int J Sports Med. 2003;  24 9-14
  • 8 Billat V L, Renoux J C, Pinoteau J, Petit B, Koralsztein J P. Time to exhaustion at 100 % of velocity at V·O2max and modelling of the time-limit/velocity relationship in elite long-distance runners.  Eur J Appl Physiol. 1994;  69 271-273
  • 9 Billat V L, Renoux J C, Pinoteau J, Petit B, Koralsztein J P. Reproducibility of running time to exhaustion at V·O2max in subelite runners.  Med Sci Sports Exerc. 1994;  26 254-257
  • 10 Billat V L, Slawinski J, Bocquet V, Chassaing P, Demarle A, Koralsztein J P. Very short (15 s - 15 s) interval training around the critical velocity allows middle-aged runners to maintain V·O2max for 14 minutes.  Int J Sports Med. 2001;  22 201-208
  • 11 Blondel N, Berthoin S, Billat V, Lensel G. Relationship between run times to exhaustion at 90, 100, 120, and 140 % of vV·O2max and velocity expressed to critical velocity and maximal velocity.  Int J Sports Med. 2001;  22 27-33
  • 12 Bourden P. Blood lactate transition thresholds: concepts and controversies. Gore CJ Physiological Tests for Elite Athletes. Champaign, IL, USA; Human Kinetics 2000: 50-65
  • 13 Christensen E H, Hedman R, Saltin B. Intermittent and continuous running: a further contribution to the physiology of intermittent work.  Acta Physiol Scand. 1960;  50 269-286
  • 14 Coyle E F, Martin W H, Ehsani A A, Hagberg J M, Bloomfield S A, Sinacore D R, Holloszy J O. Blood lactate threshold in some well-trained ischemic heart disease patients.  J Appl Physiol. 1983;  54 18-23
  • 15 Daniels J, Scardina N, Hayes J, Foley P. Elite and subelite female middle- and long-distance runners. Landers DM Sport and Elite Performers: The 1984 Olympic Scientific Congress Proceedings, Volume 3. Champaign, IL, USA; Human Kinetics 1986: 57-72
  • 16 Dekerle J, Baron B, Dupont L, Vanvelcenhar J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power.  Eur J Appl Physiol. 2003;  89 281-288
  • 17 Doherty M, Smith P M, Schroder K. Reproducibility of the maximum accumulated oxygen deficit and run time to exhaustion during short-distance running.  J Sports Sci. 2000;  18 331-338
  • 18 Dupont G, Berthoin S. Time spent at a high percentage of V·O2max for short intermittent runs: active versus passive recovery.  Can J Appl Physiol. 2004;  29 S3-S16
  • 19 Dupont G, Blondel N, Berthoin S. Time spent at V·O2max: a methodological issue.  Int J Sports Med. 2003;  24 291-297
  • 20 Dupont G, Blondel N, Lensel G, Berthoin S. Critical velocity and time spent at a high level of V·O2max for short intermittent runs at supramaximal velocities.  Can J Appl Physiol. 2002;  27 103-115
  • 21 Essén B. Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model.  Acta Physiol Scand. 1978;  454 (Suppl) 1-32
  • 22 Farrell P, Wilmore J H, Coyle E F, Billing J E, Costill D L. Plasma lactate accumulation and distance running performance.  Med Sci Sport Exerc. 1979;  11 338-344
  • 23 Florence S, Weir J P. Relationship of critical velocity to marathon running performance.  Eur J Appl Physiol. 1997;  75 274-278
  • 24 Gaesser G A, Poole D C. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-70
  • 25 Gollnick P D, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates.  J Physiol. 1974;  241 45-57
  • 26 Hargreaves M, McKenna M J, Jenkins D G. Muscle metabolites and performance during high-intensity, intermittent exercise.  J Appl Physiol. 1998;  84 1687-1691
  • 27 Hermansen L, Osnes J B. Blood and pH after maximal exercise in man.  J Appl Physiol. 1972;  32 304-308
  • 28 Housh T J, Devries H A, Housh D J, Tichy M W, Smyth K D, Tichy A M. The relationship between critical power and the onset of blood lactate accumulation.  J Sports Med Phys Fitness. 1991;  31 31-36
  • 29 Jones A M, Doust J H. A 1 % treadmill grade most accurately reflects the energetic cost of outdoor running.  J Sports Sci. 1996;  14 321-327
  • 30 Kachouri M, Vandewalle H, Huet M, Thamaïdis M, Jousselin E, Monod H. Is the exhaustion time at maximal aerobic speed an index of aerobic endurance?.  Arch Physiol Biochem. 1996;  104 330-336
  • 31 Kuipers H, Verstappen F TJ, Keizer H A, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiological correlates.  Int J Sports Med. 1985;  6 197-201
  • 32 Medbø J I, Mohn A C, Tabata I, Bahr R, Vaage O, Sejersted O M. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 33 Millet G P, Candau R, Fattori B, Varray A. V·O2 responses to different intermittent runs at velocity associated with V·O2max.  Can J Appl Physiol. 2003;  28 410-423
  • 34 Millet G P, Libicz S, Borrani F, Fattori P, Bignot F, Candau R. Effects of increased intensity of intermittent training in runners with different kinetics.  Eur J Appl Physiol. 2003;  90 50-57
  • 35 Monod H, Scherer J. The work capacity of synergy muscular groups.  Ergonomics. 1965;  8 329-338
  • 36 Morgan H E, Parmeggiani A. Regulation of glycogenolysis in muscle.  J Biol Chem. 1964;  239 2440-2445
  • 37 Morton R H, Billat V L. The critical power model for intermittent exercise.  Eur J Appl Physiol. 2004;  91 303-307
  • 38 Noakes T D, Clair Gibson St A, Lambert E V. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise: summary and conclusions.  Br J Sports Med. 2005;  39 120-124
  • 39 Parmeggiani A, Bowman R H. Regulation of phosphofructokinase activity by citrate in normal and diabetic muscle.  Biochem Biophys Res Comm. 1963;  12 268-273
  • 40 Passonneau J V, Lowry O H. Phosphofructokinase and the Pasteur effect.  Biochem Biophys Res Comm. 1962;  7 10-15
  • 41 Pepper M L, Housh T J, Johnson G O. The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running.  Int J Sports Med. 1992;  13 121-124
  • 42 Poole D C, Ward S A, Gardner G W, Whipp B J. Metabolic and respiratory profile of the upper limit for prolonged exercise in man.  Ergonomics. 1988;  31 1265-1279
  • 43 Renoux J C, Petit B, Billat V, Koralsztein J P. Oxygen deficit is related to the exercise time to exhaustion at maximal aerobic speed in middle distance runners.  Arch Physiol Biochem. 1999;  107 280-285
  • 44 Robergs R A, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis.  Am J Physiol. 2004;  287 R502-R516
  • 45 Saltin B, Essén B, Pederson P K. Intermittent exercise: its physiology and some practical applications. Jokl E Advances in Exercise Physiology. Basel; Karger 1976: 23-51
  • 46 Slawinski J S, Billat V L. Changes in internal mechanical cost during running to exhaustion.  Med Sci Sports Exerc. 2005;  37 1180-1186
  • 47 Snell P G, Mitchell J H. The role of maximal oxygen uptake in exercise performance.  Clin Chest Med. 1984;  5 51-62
  • 48 Storey K B, Hochachka P W. Activation of muscle glycolysis: a role for creatine phosphate in phosphofructokinase regulation.  FEBS Lett. 1974;  46 337-339
  • 49 Tardieu-Berger M, Thevenet D, Zouhal H, Prioux J. Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes.  Eur J Appl Physiol. 2004;  93 145-152
  • 50 Taylor W M, Halperin M L. Regulation of pyruvate dehydrogenase in muscle.  J Biol Chem. 1973;  248 6080-6083
  • 51 Vuorimaa T, Vasankari T, Rusko H. Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with V·O2max.  Int J Sports Med. 2000;  21 96-101
  • 52 Wasserman K, Whipp B J, Koyal S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243

Professor Lars McNaughton

University of Hull
Department of Sport, Health and Exercise Science

Cottingham Road

Hull HU6 7RX

England

Phone: + 44 14 82 46 69 27

Email: l.mcnaughton@hull.ac.uk