Abstract
The evolution of carnivorous plants has been modeled as a selective tradeoff between
photosynthetic costs and benefits in nutrient-poor habitats. Although possibly applicable
for pitfall and flypaper trappers, more variables may be required for active trapping
systems. Bladderwort (Utricularia) suction traps react to prey stimuli with an extremely rapid release of elastic instability.
Trap setting requires considerable energy to engage an active ion transport process
whereby water is pumped out through the thin bladder walls to create negative internal
pressure. Accordingly, empirical estimates have shown that respiratory rates in bladders
are far greater than in leafy structures. Cytochrome c oxidase (COX) is a multi-subunit enzyme that catalyzes the respiratory reduction
of oxygen to water and couples this reaction to translocation of protons, generating
a transmembrane electrochemical gradient that is used for the synthesis of adenosine
triphosphate (ATP). We have previously demonstrated that two contiguous cysteine residues
in helix 3 of COX subunit I (COX I) have evolved under positive Darwinian selection.
This motif, absent in ≈ 99.9 % of databased COX I proteins from eukaryotes, Archaea,
and Bacteria, lies directly at the docking point of COX I helix 3 and cytochrome c . Modeling of bovine COX I suggests the possibility that a vicinal disulfide bridge
at this position could cause premature helix termination. The helix 3-4 loop makes
crucial contacts with the active site of COX, and we postulate that the C‐C motif
might cause a conformational change that decouples (or partly decouples) electron
transport from proton pumping. Such decoupling would permit bladderworts to optimize
power output (which equals energy times rate) during times of need, albeit with a
20 % reduction in overall energy efficiency of the respiratory chain. A new model
for the evolution of bladderwort carnivory is proposed that includes respiration as
an additional tradeoff parameter.
Key words
Bladderworts - carnivorous plants - cytochrome c oxidase - conformational change - COX - electron transport - energetics - protein
structure - proton pumping - respiration -
Utricularia.
References
1
Abramson J., Riistama S., Larsson G., Jasaitis A., Svensson-Ek M., Laakkonen L., Puustinen A.,
Iwata S., Wikstrom M..
The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site.
Nature Structural Biology.
(2000);
7
910-917
2
Adamec L..
Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa .
Aquatic Botany.
(1997);
59
297-306
45
Adamec L..
Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species.
Plant Biology.
(2006);
8
765-769
46
Albert V. A., Williams S. E., Chase M. W..
Carnivorous plants: phylogeny and structural evolution.
Science.
(1992);
257
1491-1495
3
Brooks B. R., Bruccoleri R. E., Olafson B. D., States B. J., Swaminathan S., Kaplus M..
CHARMM: a program for macromolecular energy, minimization, and dynamics calculations.
Journal of Computational Chemistry.
(1983);
4
187-217
4
Burke P. V., Poyton R. O..
Structure/function of oxygen-regulated isoforms in cytochrome c oxidase.
Journal of Experimental Biology.
(1998);
201
1163-1175
5
Ellison A. M., Gotelli N. J..
Evolutionary ecology of carnivorous plants.
Trends in Ecology and Evolution.
(2001);
16
623-629
6
Ferguson-Miller S., Brautigan D. L., Margoliash E..
Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes
c with binding to mitochondrial cytochrome c oxidase.
Journal of Biological Chemistry.
(1976);
251
1104-1115
7
Fineran B. A., Lee M. S. L..
Organization of mature glands on the trap and other organs of the bladderwort Utricularia monanthos .
Protoplasma.
(1980);
103
17-34
8
Flöck D., Helms V..
Protein-protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c .
Proteins.
(2002);
47
75-85
9
Forterre Y., Skotheim J. M., Dumais J., Mahadevan L..
How the Venus flytrap snaps.
Nature.
(2005);
433
421-425
10
Friday L. E..
Measuring investment in carnivory: seasonal and individual variation in trap number
and biomass in Utricularia vulgaris L.
New Phytologist.
(1992);
121
439-445
11 Givnish T. J..
Ecology and evolution of carnivorous plants. Abrahamson, W. G., ed. Plant-Animal Interactions. New York; McGraw-Hill (1989): 242-290
12
Givnish T. J., Burkhardt E. L., Happel R. E., Weintraub J. D..
Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny,
moist nutrient-poor habitats.
American Naturalist.
(1984);
124
479-497
13
Grossman L. I., Schmidt T. R., Wildman D. E., Goodman M..
Molecular evolution of aerobic energy metabolism in primates.
Molecular Phylogenetics and Evolution.
(2001);
18
26-36
14
Guisande C., Andrade C., Granado-Lorencio C., Duque S. R., Nunez-Avellaneda M..
Effects of zooplankton and conductivity on tropical Utricularia foliosa investment in carnivory.
Aquatic Ecology.
(2000);
34
137-142
15
Guisande C., Aranguren N., Andrade-Sossa C., Prat N., Granado-Lorencio C., Barrios M. L.,
Bolivar A., Nunez-Avellaneda M., Duque S. R..
Relative balance of the cost and benefit associated with carnivory in the tropical
Utricularia foliosa .
Aquatic Botany.
(2004);
80
271-282
16
Hodick D., Sievers A..
On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis).
Planta.
(1989);
179
32-42
17
Humphrey W., Dalke A., Schulten K..
VMD: visual molecular dynamics.
Journal of Molecular Graphics.
(1996);
14
33-38
18
Jobson R. W., Albert V. A..
Molecular rates parallel diversification contrasts between carnivorous plant sister
lineages.
Cladistics.
(2002);
18
127-136
19
Jobson R. W., Nielsen R., Laakkonen L., Wikström M., Albert V. A..
Adaptive evolution of cytochrome c oxidase: infrastructure for a carnivorous plant radiation.
Proceedings of the National Academy of Sciences of the USA.
(2004);
101
18064-18068
20
Jobson R. W., Playford J., Cameron K. M., Albert V. A..
Molecular phylogenetics of Lentibulariaceae inferred from plastid rps 16 intron and trn L‐F DNA sequences: implications for character evolution and biogeography.
Systematic Botany.
(2003);
28
157-171
21 Juniper B. E., Robins R. J., Joel D. M.. The Carnivorous Plants. London, UK; Academic
Press, Ltd (1989)
22
Kadenbach B..
Intrinsic and extrinsic uncoupling of oxidative phosphorylation.
Biochimica et Biophysica Acta.
(2003);
1604
77-94
23
Knight S. E..
Costs of carnivory in the common bladderwort, Utricularia macrorhiza .
Oecologia.
(1992);
89
348-355
24
Méndez M., Karlsson P. S..
Costs and benefits of carnivory in plants: insights from the photosynthetic performance
of four carnivorous plants in a subarctic environment.
Oikos.
(1999);
86
105-112
25
Mitchell P..
Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type
of mechanism.
Nature.
(1961);
191
144-148
26
Mitchell P..
Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.
Biological Reviews of the Cambridge Philosophical Society.
(1966);
41
445-502
27
Müller K., Borsch T., Legendre L., Porembski S., Theisen I., Barthlott W..
Evolution of carnivory in Lentibulariaceae and the Lamiales.
Plant Biology.
(2004);
6
447-490
28
Ostermeier C., Harrenga A., Ermler U., Michel H..
Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment.
Proceedings of the National Academy of Sciences of the USA.
(1997);
94
10547-10553
29
Ribacka C., Verkhovsky M. I., Belevich I., Bloch D.A., Puustinen A., Wikström M..
An elementary reaction step of the proton pump is revealed by mutation of tryptophan-164
to phenylalanine in cytochrome c oxidase from Paracoccus denitrificans .
Biochemistry.
(2005);
44
16502-16512
30
Roberts V.A., Pique M. E..
Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search.
Journal of Biological Chemistry.
(1999);
274
38051-38060
31
Richards J. H..
Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important?.
American Journal of Botany.
(2001);
88
170-176
32
Saraste M..
Oxidative phophorylation at the fin de siecle.
Science.
(1999);
283
1488-1492
33
Schmidt T. R., Wildman D. E., Uddin M., Opazo J. C., Goodman M., Grossman L. I..
Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates.
Proceedings of the National Academy of Sciences of the USA.
(2005);
102
6379-6384
34
Sharma V., Puustinen A., Wikström M., Laakkonen L..
Sequence analysis of the cbb3 oxidases and an atomic model for the Rhodobacter sphaeroides
enzyme.
Biochemistry.
(2006);
45
5754-5765
35
Skotheim J. M., Mahadevan L..
Physical limits and design principles for plant and fungal movements.
Science.
(2005);
308
1308-1310
36
Soulimane T., Buse G., Bourenkov G. P., Bartunik H. D., Huber R., Than M. E..
Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from Thermus thermophilus .
EMBO Journal.
(2000);
17
1766-1776
37
Stucki J..
The optimal efficiency and the economic degtrees of coupling of oxidative phosphorylation.
European Journal of Biochemistry.
(1980);
109
269-283
38
Svensson-Ek M., Abramson J., Larsson G., Tornroth S., Brzezinski P., Iwata S..
The X‐ray crystal structures of wild-type and EQ(I‐286) mutant cytochrome c oxidases from Rhodobacter sphaeroides .
Journal of Molecular Biology.
(2002);
321
329-339
39 Sydenham P. H., Findlay G. P..
Solute and water transport in the bladders of Utricularia . Anderson, W. P., ed. Ion Transport in Plants. New York; Academic Press (1973 a):
583-587
40
Sydenham P. H., Findlay G. P..
The rapid movement of the bladders of Utricularia sp.
Australian Journal of Biological Sciences.
(1973 b);
26
1115-1126
41
Sydenham P. H., Findlay G. P..
Transport of solutes and water by resetting bladders of Utricularia .
Australian Journal of Plant Physiology.
(1975);
2
335-351
42
Tsukihara T., Shimokata K., Katayama Y., Shimada H., Muramoto K., Aoyama H., Mochizuki M.,
Shinzawa-Itoh K., Yamashita E., Yao M., Ishimura Y., Yoshikawa S..
The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process.
Proceedings of the National Academy of Sciences of the USA.
(2003);
100
15304-15309
43
Wakefield A. E., Gotelli N. J., Wittman S. E., Ellison A. M..
Prey addition alters nutrient stoichiometry of the carnivorous plant Sarracenia purpurea .
Ecology.
(2005);
86
1737-1743
44
Wikström M. K. F..
Proton pump coupled to cytochrome c oxidase in mitochondria.
Nature.
(1977);
266
271-273
V. A. Albert
Natural History Museum University of Oslo
P.O. Box 1172 Blindern
0318 Oslo
Norway
Email: victor.albert@nhm.uio.no
Guest Editor: S. Porembski