Abstract
The influence of free-air ozone (O3 ) fumigation on the levels of gene transcripts and compounds of defence and signalling were analysed in leaves of adult beech trees from the “Kranzberg Forest” research site in 2003 and 2004. This includes the precursor of the stress hormone ethylene, ACC (1-aminocyclopropane-1-carboxylic acid), conjugated salicylic acid, lignin content as well as of the expression level of genes connected with oxidative stress and stress signalling. At this site mature beech trees were exposed to an enhanced O3 regime by a free-air O3 canopy exposure system. Levels of conjugated ACC and conjugated salicylic acid in leaves were increased under O3 fumigation whereas lignin content was only slightly enhanced. Quantitative real-time RT‐PCR (qRT‐PCR) was performed on transcripts of genes connected with lignin, salicylic acid, and ethylene formation, the shikimate pathway, abscisic acid biosynthesis as well as with the antioxidative system. Genes which showed O3 -dependent increases included FsCOMT (caffeic-acid O-methyltransferase) connected with lignin formation, the stress response genes FsACS2 (ACC synthase) and FsPR1 (PR10 - pathogenesis-related protein), as well as FsNCED1 (9-cis-epoxicarotenoid dioxygenase), the rate-limiting enzyme of the ABA synthesis. For FsNCED1 expression level, a significant O3 effect was found with an 8-fold (sun) and 7-fold (shade) induction in July 2003 and a 3-fold and 2.5-fold induction in July 2004. While the observed effects were not continuous, elevated O3 is concluded to have the potential to disrupt the defence and signalling system.
Key words
Free-air ozone fumigation - crown position - defence - salicylic acid - ethylene - quantitative real-time PCR - qRT‐PCR.
References
1
Aneja M. K..
Microbial colonization of beech and spruce litter - influence of decomposition site and plant litter species on the diversity of microbial community.
Microbial Ecology.
(2006);
52
127-135
2
Asada K..
The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1999);
50
601-639
3
Assmann S. M..
OPEN STOMATA1 opens the door to ABA signaling in Arabidopsis guard cells.
Trends in Plant Science.
(2003);
8
151-153
4
Bahnweg G., Heller W., Stich S., Knappe C., Betz G., Heerdt C., Kehr R. D., Ernst D., Langebartels C., Nunn A. J., Rothenburger J., Schubert R., Wallis P., Müller-Starck G., Werner H., Matyssek R., Sandermann H..
Beech leaf colonization by the endophyte Apiognomonia errabunda dramatically depends on light exposure and climatic conditions.
Plant Biology.
(2005);
7
659-669
5 Betz G.. Regulation des Shikimatstoffwechsels der europäischen Buche (Fagus sylvatica L.) unter dem Einfluss von Ozon. PhD Thesis, Technische Universität München. (2006)
6
Bianco J., Dalstein L..
Abscisic acid in needles of Pinus cembra in relation to ozone exposure.
Tree Physiology.
(1999);
19
787-791
7
Bruce R. J., West C. A..
Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension-cultures of castor bean.
Plant Physiology.
(1989);
91
889-897
8
Cabane M., Pireaux J. C., Leger E., Weber E., Dizengremel P., Pollet B., Lapierre C..
Condensed lignins are synthesized in poplar leaves exposed to ozone.
Plant Physiology.
(2004);
134
586-594
9
Durrant W. E., Dong X..
Systemic acquired resistance.
Annual Review of Phytopathology.
(2004);
42
185-209
10
Foyer C. H., Lelandais M., Kunert K. J..
Photooxidative stress in plants.
Physiologia Plantarum.
(1994);
92
696-717
11
Garcia-Plazaola J. I., Becerril J. M..
Photoprotection mechanisms in European beech (Fagus sylvatica L.) seedlings from diverse climatic origins.
Trees - Structure and Function.
(2000);
14
339-343
12
Gunthardt-Goerg M. S., McQuattie C. J., Maurer S., Frey B..
Visible and microscopic injury in leaves of five deciduous tree species related to current critical ozone levels.
Environmental Pollution.
(2000);
109
489-500
13
Haberer K., Herbinger K., Alexou M., Tausz M., Rennenberg H..
Antioxidative defence of old growth beech (Fagus sylvatica) under double ambient O3 concentrations in a free-air exposure system.
Plant Biology.
(2007);
9
215-226
14
Herbinger K., Then C., Löw M., Haberer K., Alexou M., Koch N., Remele K., Heerdt C., Grill D., Rennenberg H., Haberle K. H., Matyssek R., Tausz M., Wieser G..
Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure.
Environmental Pollution.
(2005);
137
476-482
15
Herrmann K. M., Weaver L. M..
The shikimate pathway.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1999);
50
473-503
16
Janzik I., Preiskowski S., Kneifel H..
Ozone has dramatic effects on the regulation of the prechorismate pathway in tobacco (Nicotiana tabacum L. cv. Bel W3).
Planta.
(2005);
223
20-27
17
Jiang M., Zhang J..
Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings.
Planta.
(2002);
215
1022-1030
18
Jiang M., Zhang J..
Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings.
Plant, Cell and Environment.
(2003);
26
929-939
19
Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R..
Plant defense systems induced by ozone.
Plant, Cell and Environment.
(1994);
17
783-794
20
Kangasjärvi J., Jaspers P., Kollist H..
Signalling and cell death in ozone-exposed plants.
Plant, Cell and Environment.
(2005);
28
1021-1036
21
Karnosky D. F., Zak D. R., Pregitzer K. S., Awmack C. S., Bockheim J. G., Dickson R. E., Hendrey G. R., Host G. E., King J. S., Kopper B. J., Kruger E. L., Kubiske M. E., Lindroth R. L., Mattson W. J., Mcdonald E. P., Noormets A., Oksanen E., Parsons W. F. J., Percy K. E., Podila G. K., Riemenschneider D. E., Sharma P., Thakur R., Sober A., Sober J., Jones W. S., Anttonen S., Vapaavuori E., Mankovska B., Heilman W., Isebrands J. G..
Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2 : a synthesis of molecular to ecosystem results from the Aspen FACE project.
Functional Ecology.
(2003);
17
289-304
22
Kiefer E., Heller W., Ernst D..
A simple and efficient protocol for isolation of functional RNA from plant tissues rich in secondary metabolites.
Plant Molecular Biology Reporter.
(2000);
18
33-39
24
Kovtun Y., Chiu W. L., Tena G., Sheen J..
Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants.
Proceedings of the National Academy of Sciences of the USA.
(2000);
97
2940-2945
25
Kronfuss G., Polle A., Tausz M., Havranek W. M., Wieser G..
Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce (Picea abies [L.] Karst.).
Trees - Structure and Function.
(1998);
12
482-489
26
Krupa S. V., Manning W. J..
Atmospheric ozone - formation and effects on vegetation.
Environmental Pollution.
(1988);
50
101-137
27
Laisk A., Kull O., Moldau H..
Ozone concentration in leaf intercellular air spaces is close to zero.
Plant Physiology.
(1989);
90
1163-1167
28
Laloi C., Apel K., Danon A..
Reactive oxygen signalling: the latest news.
Current Opinion in Plant Biology.
(2004);
7
323-328
29
Langebartels C., Kerner K., Leonardi S., Schraudner M., Trost M., Heller W., Sandermann H..
Biochemical plant responses to ozone: differential induction of polyamine and ethylene bioynthesis in tobacco.
Plant Physiology.
(1991);
95
882-889
30 Langebartels C., Schraudner M., Heller W., Ernst D., Sandermann H.. Oxidative stress and defense reactions in plants exposed to air pollutants und UV‐B radiation. Inzé, D. and Van Montagu, M., eds. Oxidative Stress in Plants. London, New York; Taylor and Francis (2002): 105-135
31
Löw M., Herbinger K., Nunn A. J., Häberle K.-H., Leuchner M., Heerdt C., Werner H., Wipfler P., Pretzsch H., Tausz M., Matyssek R..
Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica) .
Trees.
(2006);
20
539-548
32
Lizada M. C. C., Yang S. F..
Simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid.
Analytical Biochemistry.
(1979);
100
140-145
33
Mahalingam R., Gomez-Buitrago A., Eckardt N., Shah N., Guevara-Garcia A., Day P., Raina R., Fedoroff N. V..
Characterizing the stress/defense transcriptome of Arabidopsis .
Genome Biology.
(2003);
4
R20
34
Matyssek R., Sandermann H..
Impact of ozone on trees: an ecophysiological perspective.
Progress in Botany.
(2003);
64
349-404
36
Matyssek R., Le Thiec D., Löw M., Dizengremel P., Nunn A. J., Häberle K. H..
Interactions between drought and O3 stress in forest trees.
Plant Biology.
(2006);
8
11-17
37
Meuwly P., Metraux J. P..
Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic-acid and its putative biosynthetic precursors in cucumber leaves.
Analytical Biochemistry.
(1993);
214
500-505
38
Moeder W., Barry C. S., Tauriainen A. A., Betz C., Tuomainen J., Utriainen M., Grierson D., Sandermann H., Langebartels C., Kangasjärvi J..
Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato.
Plant Physiology.
(2002);
130
1918-1926
39
Neill S., Desikan R., Hancock J..
Hydrogen peroxide signalling.
Current Opinion in Plant Biology.
(2002);
5
388-395
40
Noctor G., Arisi A. C. M., Jouanin L., Kunert K. J., Rennenberg H., Foyer C. H..
Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants.
Journal of Experimental Botany.
(1998);
49
623-647
41
Noctor G., Foyer C. H..
Ascorbate and glutathione: keeping active oxygen under control.
Annual Review of Plant Physiology and Plant Molecular Biology.
(1998);
49
249-279
42
Nunn A. J., Reiter I. M., Häberle K. H., Werner H., Langebartels C., Sandermann H., Heerdt C., Fabian P., Matyssek R..
“Free-air” ozone canopy fumigation in an old-growth mixed forest: concept and observations in beech.
Phyton - Annales Rei Botanicae.
(2002);
42
105-119
43
Nunn A. J., Anegg S., Betz G., Simons S., Kalisch G., Seidlitz H. K., Grams T. E. E., Häberle K. H., Matyssek R., Bahnweg G., Sandermann H., Langebartels C..
Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed european beech.
Plant, Cell and Environment.
(2005 a);
28
886-897
44
Nunn A. J., Kozovits A. R., Reiter I. M., Heerdt C., Leuchner M., Lutz C., Liu X., Löw M., Winkler J. B., Grams T. E. E., Häberle K. H., Werner H., Fabian P., Rennenberg H., Matyssek R..
Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica) .
Environmental Pollution.
(2005 b);
137
494-506
46
Oksanen E., Haikio E., Sober J., Karnosky D. F..
Ozone-induced H2 O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity.
New Phytologist.
(2004);
161
791-799
47
Olbrich M., Betz G., Gerstner E., Langebartels C., Sandermann H., Ernst D..
Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.).
Plant Biology.
(2005);
7
670-676
48
Ormrod D. P., Landry L. G., Conklin P. L..
Short-term Uv-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants.
Physiologia Plantarum.
(1995);
93
602-610
49
Paakkonen E., Seppanen S., Holopainen T., Kokko H., Karenlampi S., Karenlampi L., Kangasjärvi J..
Induction of genes for the stress proteins PR‐10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought.
New Phytologist.
(1998);
138
295-305
50
Pei Z. M., Murata Y., Benning G., Thomine S., Klusener B., Allen G. J., Grill E., Schroeder J. I..
Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells.
Nature.
(2000);
406
731-734
51
Pell E. J., Schlagnhaufer C. D., Arteca R. N..
Ozone-induced oxidative stress: mechanisms of action and reaction.
Physiologia Plantarum.
(1997);
100
264-273
52
Pierik R., Whitelam G. C., Voesenek L. A. C. J., de Kroon H., Visser E. J. W..
Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signalling.
The Plant Journal.
(2004);
38
310-319
53
Pincon G., Maury S., Hoffmann L., Geoffroy P., Lapierre C., Pollet B., Legrand M..
Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth.
Phytochemistry.
(2001);
57
1167-1176
54
Pretzsch H., Kahn M., Grote R..
The mixed spruce-beech forest stands of the “Sonderforschungsbereich” “growth or parasite defence?” in the forest district Kranzberger Forst.
Forstwissenschaftliches Centralblatt.
(1998);
117
241-257
55
Rao M. V., Lee H., Davis K. R..
Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death.
The Plant Journal.
(2002);
32
447-456
56
Samuel M. A., Miles G. P., Ellis B. E..
Ozone treatment rapidly activates MAP kinase signalling in plants.
The Plant Journal.
(2000);
22
367-376
57
Sandermann H..
Ozone and plant health.
Annual Review of Phytopathology.
(1996);
34
347-366
58
Sandermann H., Ernst D., Heller W., Langebartels C..
Ozone: an abiotic elicitor of plant defence reactions.
Trends in Plant Science.
(1998);
3
47-50
59
Savenstrand H., Brosche M., Strid A..
Regulation of gene expression by low levels of ultraviolet-B radiation in Pisum sativum : isolation of novel genes by suppression subtractive hybridisation.
Plant and Cell Physiology.
(2002);
43
402-410
60
Saxe H..
Physiological responses of trees to ozone - interactions and mechanisms.
Current Topics in Plant Biology.
(2002);
3
27-55
61
Schraudner M., Moeder W., Wiese C., Van Camp W., Inze D., Langebartels C., Sandermann H..
Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3.
The Plant Journal.
(1998);
16
235-245
62
Sharma Y. K., Leon J., Raskin I., Davis K. R..
Ozone-induced responses in Arabidopsis thaliana : the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance.
Proceedings of the National Academy of Sciences of the USA.
(1996);
93
5099-5104
63
Strohm M., Eiblmeier M., Langebartels C., Jouanin L., Polle A., Sandermann H., Rennenberg H..
Responses of antioxidative systems to acute ozone stress in transgenic poplar (Populus tremula × P. alba) over-expressing glutathione synthetase or glutathione reductase.
Trees.
(2002);
16
262-273
64
Tamaoki M., Nakajima N., Kubo A., Aono M., Matsuyama T., Saji H..
Transcriptome analysis of O3 -exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression.
Plant Molecular Biology.
(2003);
53
443-456
65
Tausz M., Olszyk D. M., Monschein S., Tingey D. T..
Combined effects of CO2 and O3 on antioxidative and photoprotective defense systems in needles of ponderosa pine.
Biologia Plantarum.
(2004 a);
48
543-548
66
Taylor I. B., Burbidge A., Thompson A. J..
Control of abscisic acid synthesis.
Journal of Experimental Botany.
(2000);
51
1563-1574
68
Tuomainen J., Betz C., Kangasjärvi J., Ernst D., Yin Z. H., Langebartels C., Sandermann H..
Ozone induction of ethylene emission in tomato plants: regulation by differential accumulation of transcripts for the biosynthetic enzymes.
The Plant Journal.
(1997);
12
1151-1162
69
Van Loon L. C., Van Strien E. A..
The families of pathogenesis-related proteins, their activities, and comparative analysis of PR‐1 type proteins.
Physiological and Molecular Plant Pathology.
(1999);
55
85-97
70
Wohlgemuth H., Mittelstrass K., Kschieschan S., Bender J., Weigel H.-J., Overmyer K., Kangasjärvi J., Langebartels C., Sandermann H..
Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone.
Plant, Cell and Environment.
(2002);
25
717-726
71
Wu G., Shortt B. J., Lawrence E. B., Leon J., Fitzsimmons K. C., Levine E. B., Raskin I., Shah D. M..
Activation of host defense mechanisms by elevated production of H2 O2 in transgenic plants.
Plant Physiology.
(1997);
115
427-435
72
Zinser C., Jungblut T., Heller W., Seidlitz H. K., Schnitzler J. P., Ernst D., Sandermann H..
The effect of ozone in Scots pine (Pinus sylvestris L.): gene expression, biochemical changes and interactions with UV‐B radiation.
Plant, Cell and Environment.
(2000);
23
975-982
H. Rennenberg
Institute of Forest Botany and Tree Physiology Chair of Tree Physiology Albert Ludwigs University Freiburg
Georges-Köhler-Allee 053/054
79110 Freiburg
Germany
Email: heinz.rennenberg@ctp.uni-freiburg.de
Guest Editor: R. Matyssek