Abstract
Canavan disease is a childhood leukodystrophy caused by mutations in the gene for human aspartoacylase (ASPA ), which leads to an abnormal accumulation of the substrate molecule N-acetyl-aspartate (NAA) in the brain. This study was designed to model the natural history of Canavan disease using MRI and proton magnetic resonance spectroscopy (1 H-MRS). NAA and various indices of brain structure (morphology, quantitative T1, fractional anisotropy, apparent diffusion coefficient) were measured in white and gray matter regions during the progression of Canavan disease. A mixed-effects statistical model was used to fit all outcome measures. Longitudinal data from 28 Canavan patients were directly compared in each brain region with reference data obtained from normal, age-matched pediatric subjects. The resultant model can be used to non-invasively monitor the natural history of Canavan disease or related leukodystrophies in future studies involving drug, gene therapy, or stem cell treatments.
Key words
Canavan disease - leukodystrophy - pediatric - brain - spectroscopy - magnetic resonance - NAA
References
1
Anderson V M. et al .
Magnetic resonance imaging measures of brain atrophy in multiple sclerosis.
JMRI.
2006;
23
605-618
2
Ashwal S. et al .
Proton spectroscopy detected myoinositol in children with traumatic brain injury.
Pediatric Research.
2004;
56
630-638
3
Barker P B, Bryan R N, Kumar A J, Naidu S.
Proton NMR spectroscopy of Canavan disease.
Neuropediatrics.
1992;
23
263-267
4
Barkovich A J, Kjos B O, Jackson D E, Norman D.
Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T.
Radiology.
1988;
166
173-180
5
Baslow M H, Suckow R F, Sapirstein V, Hungund B L.
Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes.
J Mol Neurosci.
1999;
13
47-53
6
Baslow M.
Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation.
J Mol Neurosci.
2003;
21
185-190
7
Bermel R A, Bakshi R.
The measurement and clinical relevance of brain atrophy in multiple sclerosis.
Lancet Neurology.
2006;
5
158-170
8 Bevington P R. Data Reduction and Error Analysis for the Physical Sciences. New York; McGraw Hill 1969
9
Bhakoo K K, Craig T J, Styles P.
Developmental and regional distribution of ASPA in rat brain tissue.
J Neurochem.
2001;
79
211-220
10
Birken D L, Oldendorf W H.
N-acteyl-L-aspartic acid: a literature review of a compound prominent in proton spectoscopic studies of brain.
Neuroscience & Biobehavioral Reviews.
1989;
13
23-31
11
Bluml S.
In vivo quantitation of cerebral metabolite concentrations using natural abundance 13C MRS at 1.5 T.
JMRI.
1999;
136
219-225
12
Bottomley P A.
Spatial localization in NMR spectroscopy in vivo.
Annals NY Acad Sci.
1987;
508
333-348
13
Curatolo A. et al .
Distribution of NAA and NAAG in nervous tissue.
J Neurochem.
1965;
12
339-342
14
D'Adamo A F, Yatsu F M.
Acetate metabolism in the nervous system: NAA and the biosynthesis of brain lipids.
J Neurochem.
1965;
13
961-965
15
Engelbrecht V, Rassek M, Gartner J, Kahn T, Modder U.
Magnetic resonance imaging and proton spectroscopy in two siblings with Canavan's disease.
Fortschr Rontgenstr.
1995;
163
238-244
16
Goldstein F B.
Aminhydrolases of brain; enzymatic hydrolysis of NAA and other N-acyl-amino acid.
J Neurochem.
1976;
26
45-49
17
Haselgrove J, Moore J, Wang Z, Traipe E, and Bilaniuk L.
A method for fast multislice T1 measurement: feasibility studies on phantoms, young children, and children with Canavan's disease.
J Magn Reson Imaging.
2000;
11
360-367
18
Horska A, Kaufmann W E, Brant L J, Naidu S, Harris J C, Barker P B.
In vivo quantitative proton MRSI study of brain development from childhood to adolescence.
J Magn Reson Imaging.
2002;
15
137-143
19
Huppi P S. et al .
Magnetic resonance in preterm and term newborns: 1H‐MRS in developing human brain.
Pediatric Research.
1991;
30
574-578
20
Janson C, McPhee S WJ, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A, Wang D J, Shera D, Hurh P, Rupin J, Saslow E, Goldfarb O, Goldberg M, Larijani G, Sharrar W, Liouterman L, Camp A, Kolodny E, Samulski J, Leone P.
Gene therapy of Canavan disease: AAV2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain.
Human Gene Therapy.
2002;
13
1391-1412
21
Janson C G, Assadi M, Francis J, Bilaniuk L, Shera D, Leone P.
Lithium citrate for Canavan disease.
Pediatric Neurology.
2005;
33
235-243
22
Janson C G, Janson C G, Kolodny E H, Zeng B J, Raghavan S, Pastores G, Torres P, Assadi M, McPhee S, Goldfarb O, Saslow B, Freese A, Wang D J, Bilaniuk L, Shera D, Leone P.
Mild-onset presentation of Canavan disease associated with novel G212A point mutation in aspartoacylase gene.
Annals of Neurology.
2006;
59
428-431
23
Kaul R. et al .
Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease.
Nature Genetics.
1993;
5
118-123
24
Kimani B F, Jacobowitz D M, Kallarakal A T, Namboodiri M AA.
ASPA is restricted primarily to myelin-synthesizing cells in the CNS: therapeutic implications for Canavan disease.
Molec Brain Research.
2002;
107
176-182
25
Kimani B F, Jacobowitz D M, Namboodiri M AA.
Developmental increase of ASPA in oligodendrocytes parallels CNS myelination.
Dev Brain Research.
2003;
140
105-115
26
Kingsley P B.
Methods of measuring Spin-Lattice (T1) relaxation times: an annotated bibliography.
Concepts in Magnetic Resonance.
1999;
11
243-276
27
Kreis R, Ernst T, Ross B D.
Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy.
Magn Reson Med.
1993;
30
424-437
28
Laird N M, Ware J H.
Random-effects models for longitudinal data.
Biometrics.
1982;
38
963-974
29
Lam W, Wang Z, Zhao H. et al .
MRS of basal ganglia in childhood: a semiquantitative analysis.
Neuroradiology.
1998;
40
315-323
30
Leone P, Janson C G, McPhee S J, During M J.
Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease.
Curr Opin Molec Ther.
1999;
1
487-491
31
Lu Z H, Chakraborty G, Ledeen R W, Yahya D, Wu G.
N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain.
Brain Res Mol Brain Res.
2004;
17
71-78
32
Madhavarao C N, Moffett J R, Moore R A, Viola R E, Namboodiri M AA, Jacobowitz D M.
Immunohistochemical localization of ASPA in the rat central nervous system.
J Comp Neurol.
2004;
472
318-329
33
McArdle C B, Richardson C J, Nicholas D A, Mirfakhraee M, Hayden C K, Amparo E G.
Developmental features of the neonatal brain: MR imaging. Part I. Gray-white matter differentiation and myelination.
Radiology.
1987;
162
223-229
34
McPhee S WJ, Janson C G. et al .
Effects of AAV‐2 mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease.
Molecular Brain Research.
2005;
135
112-121
35
Mehta V, Namboodiri M A.
N-acetylaspartate as an acetyl source in the nervous system.
Brain Res Mol Brain Res.
1995;
31
151-157
36
Michaelis T, Merboldt K D, Bruhn H, Hanicke W, Frahm J.
Absolute concentration of metabolites in the adult human brain in vivo: Quantification of localized proton MR spectra.
Radiology.
1993;
187
219-227
37
Miyake M, Kakimoto Y.
Developmental changes of NAA, NAAG, and beta-citryl-L-glutamic acid and their distributions in the brain and other organs of various species of animals.
J Neurochem.
1981;
36
804-810
38
Moffett J R, Namboodiri M A, Cangro C, Heale J.
Immunohistochemical localization of NAA in the rat brain.
Neuroreport.
1991;
2
131-134
39
Morriss M C, Zimmerman R A, Bilaniuk L, Hunter J V, Haselgrove J C.
Changes in brain water diffusion during childhood.
Pediatric Neuroradiology.
1999;
41
929-934
40
Patel T B, Clark J B.
Synthesis of NAA by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport.
Biochem J.
1979;
184
539-546
41
Provencher S W.
Estimation of metabolite concentrations from localized in vivo proton NMR spectra.
Magn Reson Med.
1993;
30
672-679
42
Sager T N, Thomsen C, Valsborg J S, Laursen H, Hansen A J.
Astroglia contain a specific transport mechanism for NAA.
J Neurochem.
1999;
73
807-811
43
Schmithorst V J, Wilke M, Dardzinski B J, Holland S K.
Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study.
Radiology.
2002;
222
212-218
44
Steen R G, Gronemeyer S A, Taylor J.
Age-related changes in proton T1 values of normal human brain.
JMRI.
1995;
5
43-48
45
Steen R G, Ogg R J, Reddick W E, Kingsley P B.
Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence.
AJNR Am J Neuroradiol.
1997;
18
819-828
46
Simon J H. et al .
A longitudinal study of brain atrophy in relapsing multiple sclerosis.
Neurology.
2004;
53
139-148
47
Turner B. et al .
Ventricular enlargement in multiple sclerosis: a comparison of three-dimensional and linear MRI estimates.
Neuroradiology.
2001;
43
608-614
48
Tallan H H.
Studies on the distribution of NAA in brain.
J Biol Chem.
1957;
224
41-45
49
Tavazzi B, Lazzarino G, Leone P, Amorini A M, Bellia F, Janson C G. et al .
Simultaneous HPLC separation of purines, pyrimadines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism.
Clinical Biochemistry.
2005;
38
997-1008
50
Taylor D L, Davies S EC, Obrenovitch T P, Doheny M H, Patsalos P H, Clark J B, Symon L.
Investigation into the role of NAA in cerebral osmoregulation.
J Neurochem.
1995;
65
275-281
51
Toft P B, Geiss-Holtorff R, Rolland M O. et al .
Magnetic resonance imaging in juvenile Canavan disease.
Eur J Pediatr.
1993;
152
750-753
52
Urenjak J, Williams S R, Gadian D G, Noble M.
Specific expression of NAA in neurons, oligodendrocyte-type-2 astrocyte precursors, and immature oligodendrocytes in vitro.
J Neurochem.
1992;
59
55-61
53
Wittsack H J, Kugel H, Roth B, Heindel W.
Quantitative measurements with localized proton spectroscopy in children with Canavan's disease.
J Magnetic Resonance Imaging.
1996;
6
889-893
Christopher G. Janson, MD
The National Endowment for Alzheimer's Research
Box 772
Fairfield, CT 06824
USA
Email: janson@memorymatters.org