Zusammenfassung
Hintergrund: Die Versorgung langstreckiger Nervenverletzungen stellt auch nach weiteren Fortschritten in der Mikrochirurgie eine große Herausforderung an den Chirurgen dar. Die autologe Nerventransplantation war hierfür in den vergangenen Jahren die einzige sinnvolle Behandlungsmöglichkeit. Aufgrund der bekannten Begleiterscheinungen dieses Verfahrens (mögliche Neurombildung, Sensibilitätsverlust im Areal des Spendernervs, limitierte Verfügbarkeit von Spendernerven etc.) sowie weiterhin eingeschränkter Regenerationsergebnisse wird immer häufiger die Anwendung verschiedener Tubulisationsverfahren zur Versorgung dieser Defekte propagiert. Ziel: Im Rahmen dieser Arbeit stellen wir zusammenfassend unsere Erfahrungen und Ergebnisse mit verschiedenen synthetisch hergestellten Materialien, zellulär besiedelten Nervenleitschienen und Venen zur Rekonstruktion peripherer Nerven vor. Material und Methoden: Zur Untersuchung des Regenerationspotenzials dieser Nervenleitschienen wurde ein Modell am N. medianus von Ratten verwendet. Die Defektstrecken betrugen bei diesen Versuchen bis zu 40 mm. Es wurden leere Hohlfasern aus verschiedenen Materialien eingesetzt (Trimethylencarbonat-ε-Caprolacton, Polyethylen, Venen, Kollagen) sowie Versuche mit zellbesiedelten Tubes (Schwann-Zellen) unternommen. Der längste Beobachtungszeitraum betrug hierbei neun Monate. Ergebnisse: In unseren Untersuchungen konnten wir nachweisen, dass lediglich Schwann-Zell-befüllte Hohlfasern eine Regeneration ermöglichen, die vergleichbar ist mit der eines autologen Nerventransplantats. Weiterhin zeigte sich, dass diese Regeneration im Verlauf von neun Monaten nur über eine Defektstrecke von 20 mm möglich war. Unter Verwendung längerer Defektstrecken war das autologe Nerventransplantat stets den Nervenleitschienen überlegen.
Abstract
Background: In spite of considerable progress in microsurgical techniques, the treatment of long distance defects in peripheral nerves remains challenging for the surgeon. Autologous nerve grafting has been the only applicable procedure to overcome such defects in the past. Due to the known disadvantages of this procedure (neuroma formation and sensory deficits at the donor-site, limited availability of donor-material, etc.) and impaired regenerative results, different tubulisation techniques are discussed more frequently as alternatives to the autologous nerve grafts. Aim of the Study: In this work, the authors summarise their experiences and results with different synthetically developed materials, cellular and acellular tubes and venous conduits for the reconstruction of peripheral nerve defects. Material and Methods: To analyse peripheral nerve regeneration, we utilised a median nerve model in rats. In these studies nerve gaps up to 40 mm were induced. Guiding tubes of various materials (trimethylene carbonate-ε-caprolactone, polyethylene, veins, and collagen) were employed. Furthermore, we introduced Schwann cells as cellular elements into some of the trimethylene carbonate-ε-caprolactone tubes. The longest postoperative observation period was nine months. Results: The results demonstrated that only in the case of cellular filled tubes (syngenic Schwann cells) did regeneration occur across the 20 mm gap. This regeneration was comparable to that induced after autologous grafting. Across a 40 mm gap the autologous graft demonstrated the best results.
Schlüsselwörter
Autologe Nerventransplantation - Nervenleitschienen - Schwann-Zellen - Nervenregeneration
Key words
Autologous nerve graft - nerve conduits - Schwann cells - nerve regeneration
Literatur
1
Ao Q, Wang A, Cao W, Zhang L, Kong L, He Q, Gong Y, Zhang X.
Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro.
J Biomed Mater Res A.
2006;
77
11-18
2
Archibald S J, Shefner J, Krarup C, Madison R D.
Monkey median nerve repaired by nerve graft or collagen nerve guide tube.
J Neurosci.
1995;
15
4109-4123
3
Battiston B, Geuna S, Ferrero M, Tos P.
Nerve repair by means of tubulization: Literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair.
Microsurgery.
2005;
25
258-267
4
Battiston B, Tos P, Cushway T R, Geuna S.
Nerve repair by means of vein filled with muscle grafts. I. Clinical results.
Microsurgery.
2000;
20
32-36
5
Bertelli J A, Ghizoni M F.
Concepts of nerve regeneration and repair applied to brachial plexus reconstruction.
Microsurgery.
2006;
26
230-244
6
Brandt J, Nilsson A, Kanje M, Lundborg G, Dahlin L B.
Acutely-dissociated Schwann cells used in tendon autografts for bridging nerve defects in rats: a new principle for tissue engineering in nerve reconstruction.
Scand J Plast Reconstr Surg Hand Surg.
2005;
39
321-325
7
Chen L, Gu Y D.
An experimental study of contralateral C7 root transfer with vascularized nerve grafting to treat brachial plexus root avulsion.
J Hand Surg [Br].
1994;
19
60-66
8
Chiu D T.
Autogenous venous nerve conduits. A review.
Hand Clin.
1999;
15
667-671
9
Chiu D T, Smahel J, Chen L, Meyer V.
Neurotropism revisited.
Neurol Res.
2004;
26
381-387
10
Choi B H, Zhu S J, Kim S H, Kim B Y, Huh J H, Lee S H, Jung J H.
Nerve repair using a vein graft filled with collagen gel.
J Reconstr Microsurg.
2005;
21
267-272
11
Chong A K, Chang J.
Tissue engineering for the hand surgeon: A clinical perspective.
J Hand Surg [Am].
2006;
31
349-358
12
Ciardelli G, Chiono V.
Materials for peripheral nerve regeneration.
Macromol Biosci.
2006;
6
13-26
13
Dagum A B.
Peripheral nerve regeneration, repair, and grafting.
J Hand Ther.
1998;
11
111-117
14
Fansa H, Keilhoff G.
Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects.
Neurol Res.
2004;
26
167-173
15
Geuna S, Tos P, Battiston B, Giacobini-Robecchi M G.
Bridging peripheral nerve defects with muscle-vein combined guides.
Neurol Res.
2004;
26
139-144
16
Hsu S H, Chen C Y, Lu P S, Lai C S, Chen C J.
Oriented Schwann cell growth on microgrooved surfaces.
Biotechnol Bioeng.
2005;
92
579-588
17
IJkema-Paassen J, Jansen K, Gramsbergen A, Meek M F.
Transection of peripheral nerves, bridging strategies and effect evaluation.
Biomaterials.
2004;
25
1583-1592
18
Inada Y, Morimoto S, Moroi K, Endo K, Nakamura T.
Surgical relief of causalgia with an artificial nerve guide tube: Successful surgical treatment of causalgia (Complex Regional Pain Syndrome Type II) by in situ tissue engineering with a polyglycolic acid-collagen tube.
Pain.
2005;
117
251-258
19
Johnson E O, Zoubos A B, Soucacos P N.
Regeneration and repair of peripheral nerves.
Injury.
2005;
4
24-29
20
Kandenwein J A, Kretschmer T, Engelhardt M, Richter H P, Antoniadis G.
Surgical interventions for traumatic lesions of the brachial plexus: A retrospective study of 134 cases.
J Neurosurg.
2005;
103
614-621
21
Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H.
Peripheral nerve tissue engineering: Autologous Schwann cells vs. transdifferentiated mesenchymal stem cells.
Tissue Eng.
2006;
12
1451-1465
22
Krarup C, Archibald S J, Madison R D.
Factors that influence peripheral nerve regeneration: An electrophysiological study of the monkey median nerve.
Ann Neurol.
2002;
51
69-81
23
Lee D Y, Choi B H, Park J H, Zhu S J, Kim B Y, Huh J Y, Lee S H, Jung J H, Kim S H.
Nerve regeneration with the use of a poly(l-lactide-co-glycolic acid)-coated collagen tube filled with collagen gel.
J Craniomaxillofac Surg.
2006;
34
50-56
24
Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B.
Neuro tissue engineering of glial nerve guides and the impact of different cell types.
Biomaterials.
2006;
27
1425-1436
25
Lietz M, Ullrich A, Schulte-Eversum C, Oberhoffner S, Fricke C, Muller H W, Schlosshauer B.
Physical and biological performance of a novel block copolymer nerve guide.
Biotechnol Bioeng.
2006;
93
99-109
26
Lundborg G, Gelberman R H, Longo F M, Powell H C, Varon S.
In vivo regeneration of cut nerves encased in silicone tubes: Growth across a six-millimeter gap.
J Neuropathol Exp Neurol.
1982;
41
412-422
27
Lundborg G, Rosen B, Abrahamson S O, Dahlin L, Danielsen N.
Tubular repair of the median nerve in the human forearm. Preliminary findings.
J Hand Surg [Br].
1994;
19
273-276
28
Merle M, Dellon A L, Campbell J N, Chang P S.
Complications from silicon-polymer intubulation of nerves.
Microsurgery.
1989;
10
130-133
29
Midha R, Munro C A, Dalton P D, Tator C H, Shoichet M S.
Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube.
J Neurosurg.
2003;
99
555-565
30
Millesi H.
Techniques for nerve grafting.
Hand Clin.
2000;
16
73-91
31
Ornelas L, Padilla L, Di Silvio M, Schalch P, Esperante S, Infante P L, Bustamante J C, Avalos P, Varela D, Lopez M.
Fibrin glue: An alternative technique for nerve coaptation. Part I: Wave amplitude, conduction velocity, and plantar-length factors.
J Reconstr Microsurg.
2006;
22
119-122
32
Phillips J B, Bunting S C, Hall S M, Brown R A.
Neural tissue engineering: A self-organizing collagen guidance conduit.
Tissue Eng.
2005;
11
1611-1617
33
Poduslo J F, Curran G L.
Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT‐3, BDNF.
Brain Res Mol Brain Res.
1996;
36
280-286
34
Rodriguez F J, Gomez N, Perego G, Navarro X.
Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps.
Biomaterials.
1999;
20
1489-1500
35
Rutkowski G E, Miller C A, Jeftinija S, Mallapragada S K.
Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration.
J Neural Eng.
2004;
1
151-157
36
Schaller E, Berger A.
Peripheral nerve allograft.
Plast Reconstr Surg.
1987;
80
870-871
37
Schaller E, Lassner F, Becker M, Walter G F, Berger A.
Regeneration of autologous and allogenic nerve grafts in a rat genetic model: Preliminary report.
J Reconstr Microsurg.
1991;
7
9-12
38
Schaller E, Mailänder P, Becker M, Walter G F, Berger A.
Nervenregeneration im autologen Transplantat des Nervus ischiadicus der Ratte mit und ohne Immunsuppresion durch Cyclosporin A.
Handchir Mikrochir Plast Chir.
1988;
20
7-10
39
Scherman P, Lundborg G, Kanje M, Dahlin L B.
Neural regeneration along longitudinal polyglactin sutures across short and extended defects in the rat sciatic nerve.
J Neurosurg.
2001;
95
316-323
40
Schlosshauer B, Muller E, Schroder B, Planck H, Muller H W.
Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration.
Brain Res.
2003;
963
321-326
41
Sinis N, Schaller H E, Schulte-Eversum C, Schlosshauer B, Doser M, Dietz K, Roesner H, Müller H W, Haerle M.
Nerve regeneration across a 2 cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells.
J Neurosurg.
2005;
103
1067-1076
42
Sinis N, Schaller H E, Becker S T, Lanaras T, Schulte-Eversum C, Müller H W, Vonthein R, Rösner H, Haerle M.
Cross-chest median nerve transfer: A new transplantation model for evaluation of regeneration across a 4 cm gap in rats.
J Neurosci Methods.
2006;
156
166-172
43
Stanec S, Stanec Z.
Ulnar nerve reconstruction with an expanded polytetrafluoroethylene conduit.
Br J Plast Surg.
1998;
51
637-639
44
Strauch B, Rodriguez D M, Diaz J, Yu H L, Kaplan G, Weinstein D E.
Autologous Schwann cells drive regeneration through a 6-cm autogenous venous nerve conduit.
J Reconstr Microsurg.
2001;
17
589-595
45
Terzis J K, Papakonstantinou K C.
The surgical treatment of brachial plexus injuries in adults.
Plast Reconstr Surg.
2000;
106
1097-1122
46
Terzis J K, Sun D D, Thanos P K.
Historical and basic science review: Past, present, and future of nerve repair.
J Reconstr Microsurg.
1997;
13
215-225
47
Wen X, Tresco P A.
Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro.
J Biomed Mater Res A.
2006;
76
626-637
Dr. med. Nektarios Sinis
Klinik für Hand-, Plastische, Rekonstruktive und Verbrennungschirurgie Berufsgenossenschaftliche Unfallklinik Eberhard-Karls-Universität Tübingen
Schnarrenbergstraße 95
72076 Tübingen
Email: nsinis@bgu-tuebingen.de