Horm Metab Res 2006; 38(2): 76-81
DOI: 10.1055/s-2006-925116
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Plasma Glucose-lowering Action of Hon-Chi in Streptozotocin-induced Diabetic Rats

J.-C.  Chang1 , M.  C.  Wu1 , I.-M.  Liu2 , J.-T.  Cheng3
  • 1Department of Food Science, National Pingtung University of Science and Technology, Pingtung City
  • 2Department of Pharmacy, Tajen University, Yen-Pou, Pingtung Shien
  • 3Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan, R.O.C.
Further Information

Publication History

Received 11 August 2005

Accepted after revision 3 November 2005

Publication Date:
08 March 2006 (online)

Abstract

Hon-Chi was used for anti-hyperglycemic activity screening in streptozotocin-induced diabetic rats (STZ-diabetic rats) in an attempt to develop new substances for handling diabetes. Mandarin Hon-Chi is red yeast rice fermented with Monascus pilous and Monascus purpureus. Single oral administration of Hon-Chi decreased plasma glucose in STZ-diabetic rats in a dose-dependent manner from 50 mg/kg to 350 mg/kg. Similar treatment with Hon-Chi also lowered the plasma glucose in normal rats as effectively as that produced in STZ-diabetic rats. In addition, oral administration of Hon-Chi at the highest dose (350 mg/kg) attenuated the elevation of plasma glucose induced by an intravenous glucose challenge test in normal rats. Moreover, mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) in liver from STZ-diabetic rats were reversed in a dose-dependent manner by the repeated oral treatment of Hon-Chi three times daily for two weeks. Otherwise, hyperphagia in STZ-diabetic rats was markedly reversed by similar repeated treatment of Hon-Chi. The obtained results suggest that oral administration of Hon-Chi could decrease hepatic gluconeogenesis to lower plasma glucose in diabetic rats lacking insulin.

References

  • 1 Harris S B, Lank C N. Recommendations from the Canadian Diabetes Association. 2003 guidelines for prevention and management of diabetes and related cardiovascular risk factors.  Can Fam Physician. 2004;  50 425-433
  • 2 Jeffcoate S L. Diabetes control and complications: the role of glycated haemoglobin, 25 years on.  Diabet Med. 2004;  21 657-665
  • 3 Lindstrom J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, Uusitupa M, Tuomilehto J. Finnish Diabetes Prevention Study Group. The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity.  Diabetes Care. 2003;  26 3230-3236
  • 4 Journoud M, Jones P J. Red yeast rice: a new hypolipidemic drug.  Life Sci. 2004;  74 2675-2683
  • 5 Viana A Y, Oshida Y, Han Y Q, Koshinaka K, Sato Y. Effects of imidapril, an angiotensin-converting enzyme inhibitor, on insulin sensitivity and responsiveness in streptozotocin-induced diabetic rats.  Horm Metab Res. 2004;  36 34-38
  • 6 Nebendahl K. Routes of administration. In: Krinke GJ (ed) The laboratory rat. London; Academic press 2000: 463-483
  • 7 Johansen O, Vaaler S, Jorde R, Reikeras O. Increased plasma glucose levels after Hypnorm anaesthesia, but not after Pentobarbital anaesthesia in rats.  Lab Anim. 1994;  28 244-248
  • 8 Liu I M, Chi T C, Hsu F L, Chen C F, Cheng J T. Isoferulic acid as active principle from the rhizoma of Cimicifuga dahurica to lower plasma glucose in diabetic rats.  Planta Med. 1999;  65 712-714
  • 9 Cefalu W T. Evolving strategies for insulin delivery and therapy.  Drugs. 2004;  64 1149-1161
  • 10 Wohaieb S A, Godin D V. Alterations in free radical tissue-defense mechanisms in streptozotocin-induced diabetes in rat. Effect of insulin treatment.  Diabetes. 1987;  36 1014-1018
  • 11 Chavez M, Seeley R J, Havel P J, Friedman M I, Matson C A, Woods S C, Schwartz M W. Effect of a high-fat diet on food intake and hypothalamic neuropeptide gene expression in streptozotocin diabetes.  J Clin Invest. 1998;  102 340-346
  • 12 Bessesen D H. The role of carbohydrates in insulin resistance.  J Nutr. 2001;  131 S2782-S2786
  • 13 Bollen M, Keppens S, Stalmans W. Specific features of glycogen metabolism in the liver.  Biochem J. 1998;  336 1-31
  • 14 Consoli A, Nurjhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM.  Diabetes. 1989;  38 550-557
  • 15 Hanson R W, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression.  Annual Review of Biochemistry. 1997;  66 581-611
  • 16 Wiernsperger N, Bailey C. The antihyperglycaemic effect of metformin.  Drugs. 1999;  58 (Suppl. 1) 31-39
  • 17 Large V, Beylot M. Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin.  Diabetes. 1999;  48 1251-1257
  • 18 Meyer F, Ipaktchi M, Clauser H. Specific inhibition of gluconeogenesis by biguanides.  Nature. 1967;  213 203-204
  • 19 Heber D, Yip I, Ashley J M, Elashoff D A, Elashoff R M, Go V L. Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice dietary supplement.  Am J Clin Nutr. 1999;  69 231-236

Prof. Juei-Tang Cheng

Department of Pharmacology · College of Medicine · National Cheng Kung University · Tainan City · Taiwan 70101, R.O.C.

Phone: +886 (6) 237-2706

Fax: +886 (6) 238-6548 ·

Email: jtcheng@mail.ncku.edu.tw