Horm Metab Res 2006; 38(4): 246-252
DOI: 10.1055/s-2006-925344
Original
© Georg Thieme Verlag KG Stuttgart · New York

Expression of Corticosterone-binding Globulin in the Rat Hypothalamus

B.  Möpert1 , Z.  Herbert2 , J.  D.  Caldwell3 , G.  F.  Jirikowski1
  • 1Dept. of Anatomy II, Friedrich Schiller University, FSU Jena, Germany
  • 2Department Biology II., Neurobiology, Ludwig Maximilians University, LMU München, Germany
  • 3Dept. Biomed. Sci, University of Illinois at Rockford, Medical School, Rockford IL, USA.
Further Information

Publication History

Received 27 October 2005

Accepted after revision 8 February 2006

Publication Date:
15 May 2006 (online)

Abstract

We observed coexistence of corticosteroid-binding globulin (CBG) with vasopressin (VP) and oxytocin (OT) in magnocellular neurons in rat hypothalamus by combined immunoperoxidase staining and immunofluorescence. A portion of the supraoptic and of the paraventricular neurons showed double immunostaining of CBG with either VP or with OT. CBG staining was intensified by pretreating animals with colchicine to block axonal transport. CBG was also observed in widespread axonal projections throughout the lateral hypothalamus, the median eminence and the posterior pituitary lobe. Single ependymal cells and some of the endocrine cells in the anterior lobe contained specific CBG immunoreactivity. In situ hybridization of semithin sections with a synthetic oligonucleotide probe to CBG mRNA provided staining of magnocellular hypothalamic neurons, but not ependymal cells or anterior lobe cells. Western blots of CBG extracted by affinity chromatography from hypothalamus homogenates showed a band at approximately 50 kDa. Our observations indicate the intrinsic expression of CBG in peptidergic hypothalamus neurons in rat. The multiple locations of CBG-expressing neurons indicate multiple functional properties, probably exceeding the role of a mere steroid transporter. CBG is likely to be subject to axonal transport and secretion in a neuropeptide-like fashion, perhaps involved in neuroendocrine regulation, which may include stress responses.

References

  • 1 Scrocchi L A, Hearn S A, Han V K, Hammond G L. Corticosteroid-binding globulin biosynthesis in the mouse liver and kidney during postnatal development.  Endocrinology. 1993;  132 910-916
  • 2 del Mar Grasa M, Cabot C, Adan C, deMatteis R, Esteve M, Cinti S, Fernandez-Lopez J A, Remesar X, Alemany M. Corticosteroid-binding globulin synthesis and distribution in rat white adipose tissue.  Mol Cellular Biochemistry. 2001;  228 25-31
  • 3 De Kloet E R, Voorhuis T A, Leunissen J L, Koch B. Intracellular CBG-like molecules in the rat pituitary.  J Steroid Biochem. 1984;  20 367-371
  • 4 De Moor P, Heirwegh K, Heremans J F, Declerck-Raskin M. Protein binding of corticoids studied by gel filtration.  J Clin Invest. 1962;  41 816-827
  • 5 Demey-Ponsart E, Foidart J M, Sulon J, Sodoyez J C. Serum CBG, free and total cortisol and circadian patterns of adrenal function in normal pregnancy.  J Steroid Biochem. 1982;  16 165-169
  • 6 Dey R, Roychowdhury P. Homology model of human corticosteroid-binding globulin: a study of its steroid binding ability and a plausible mechanism of steroid hormone release at the site of inflammation.  J Mol Model (Online). 2003;  9 183-189
  • 7 Hammond G L, Smith C L, Underhill D A. Molecular studies of corticosteroid-binding globulin structure, biosynthesis and function.  J Steroid Biochem Mol Biol. 1991;  40 755-762
  • 8 Slaunwhite W R, Sandberg A A. Transcortin: A corticosteroid-binding protein of plasma.  J Clin Invest. 1959;  38 384-391
  • 9 Lang E R, Heil W E, Ganten D, Herman K, Unger T, Hascher W. Oxytocin unlike vasopressin is a stress hormone in the rat.  Neuroendocrinology. 1983;  46 314-316
  • 10 Engelmann M, Ebner K, Landgraf R, Holsboer F, Wotjak C T. Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats.  J Neuroendocrinol. 1999;  11 867-872
  • 11 Panksepp J. Oxytocin effects on emotional processes: separation distress, social bonding, and relationships to psychiatric disorders.  Ann N Y Acad Sci. 1992;  652 243-252
  • 12 Gluckman P D, Sizonenko S V, Bassett N S. The transition from fetus to neonate-an endocrine perspective.  Acta Paediatr Suppl. 1999;  88 7-11
  • 13 Jirikowski G F, McGimsey W C, Caldwell J D, Sar M. Distribution of oxytocinergic glucocorticoid target neurons in the rat hypothalamus.  Horm Metab Res. 1993;  25 543-544
  • 14 Liberzon I, Chalmers D T, Mansour A, Lopez J F, Watson S J, Young E A. Glucocorticoid regulation of hippocampal oxytocin receptor binding.  Brain Res. 1994;  650 317-322
  • 15 Liberzon I, Young E A. Effects of stress and glucocorticoids on CNS oxytocin receptor binding.  Psychoneuroendocrinology. 1997;  22 411-422
  • 16 Patchev V K, Schlosser S F, Hassan A HS, Almeida O FX. Oxytocin binding sites in rat limbic and hypothalamic structures: Site-specific modulation by adrenal and gonadal steroids.  Neuroscience. 1993;  57 537-543
  • 17 Panksepp J, Nelson E, Bekkedal M. Brain systems for the mediation of social separation-distress and social-reward.  Ann NY Acad Sciences. 1997;  807 78-100
  • 18 Windle R J, Shanks N, Lightman S L, Ingram C D. Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats.  Endocrinology. 1997;  138 2829-2834
  • 19 Makino S, Smith M A, Gold P W. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels.  Endocrinology. 1995;  136 3299-3309
  • 20 Herman J P, Figueiredo H, Mueller N K, Ulrich-Lai Y, Ostrander M M, Choi D C, Cullinan W E. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness.  Front Neuroendocrinol. 2003;  24 151-180
  • 21 Swanson L W, Simmons D M. Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat.  J Comp Neurol. 1989;  285 413-435
  • 22 Agnati L F, Fuxe K, Yu Z Y, Harfstand A, Okret S, Wikstrom A C, Goldstein M, Zoli M, Vale W W, Gustafsson J A. Morphometrical analysis of the distribution of corticotrophin releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat.  Neurosci Lett. 1985;  54 147-152
  • 23 Ding V DH, Moller D E, Feeney W P, Didolkar V, Nakhla A M, Rhodes L, Rosner W, Smith R G. Sex hormone-binding globulin mediates prostate androgen receptor action via a novel signaling pathway.  Endocrinology. 1998;  139 213-218
  • 24 Nakhla A M, Romas N A, Rosner W. Estradiol Activates the Prostate Androgen Receptor and Prostate Specific Antigen Secretion through the Intermediacy of Sex Hormone Binding Globulin.  J of Biol Chem. 1997;  272 6838-6841
  • 25 Nakhla A M, Rosner W. Stimulation of prostate cancer growth by androgens and estrogens through the intermediacy of sex hormone-binding globulin.  Endocrinology. 1996;  137 4126-4129
  • 26 Rosner W, Hryb D J, Khan M S, Nakhla A M, Romas N A. Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane.  Steroid Bioch Mol Biology. 1999;  69 481-485.
  • 27 Maitra U S, Khan M S, Rosner W. Corticosteroid-binding globulin receptor of the rat hepatic membrane: Solubilization, partial characterization, and the effect of steroids on binding.  Endocrinology. 1993;  133 1817-1822
  • 28 Wang Y M, Bayliss D A, Millhorn D E, Petrusz P, Joseph D R. The androgen-binding protein gene is expressed in male and female rat brain.  Endocrinology. 1990;  127 3124-3130
  • 29 Herbert Z, Jirikowski G F, Petrusz P, Englof I, Caldwell J D. Distribution of androgen binding globulin in the rat hypothalamo-hypophyseal system, co-localization with oxytocin.  Brain Research. 2003;  992 151-158
  • 30 Jirikowski G F, Herbert Z, Petrusz P P, Sendemir E, Caldwell J D. Colocalization of vasopressin and androgen-binding protein in the rat hypothalamus.  J Chem Neuroanat. 2005;  29 233-237
  • 31 Jirikowski G F. A non-surgical technique for accurate intracerebral injections in rat.  J Neurosci Methods. 1992;  42 115-118
  • 32 Sofroniew M V. Vasopressin, oxytocin and their related neurophysins. In: Björklund A, Hökfelt T (eds) Handbook of chemical Neuroanatomy Vol. 4 part 1. Amsterdam; Elsevier 1985: 93-165
  • 33 Ma X M, Levy A, Lightman S L. Emergence of an isolated arginine vasopressin (AVP) response to stress after repeated restraint: A study of both AVP and corticotropin-releasing hormone messenger ribonucleic acid and heteronuclear RNA.  Endocrinology. 1997;  138 4351-4357
  • 34 Engelmann M, Wotjak C T, Ebner K, Landgraf R. Behavioural impact of intraseptally released vasopressin and oxytocin in rats.  Exp Physiol. 2000;  85 125S-130S
  • 35 Fuchs A R, Fuchs F, Husslein P, Soloff M S, Fernstrom M J. Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor.  Science. 1982;  215 1396-1398
  • 36 Soloff M S, Alexandrova M, Fernstrom M J. Oxytocin receptors: triggers for parturition and lactation?.  Science. 1979;  204 1313-1315
  • 37 Seif S M, Robinson A G. Localization and release of neurophysins.  Ann Rev Physiol. 1978;  40 345-378
  • 38 De Kloet E R. Steroids, stability and stress.  Front Neuroendocrinol. 1995;  16 416-425
  • 39 De Kloet E R. Adrenal steroids as modulators of nerve cell function.  J steroid Biochem. 1984;  20 175-181
  • 40 Jirikowski G F, Mc Gimsey W C, Sar M. Topography of oxytocinergic glucocorticoid traget neurons in the rat hypothalamus.  Horm Metab Res. 1993;  25 543-544
  • 41 Breuner C W, Orchinik M. Plasma binding proteins as mediators of corticosteroid action in vertebrates.  J Endocrinol. 2002;  175 99-112
  • 42 Schwarz S, Pohl P. Steroid hormones and steroid hormone-binding globulins in cerebrospinal fluid studied in individuals with intact and with disturbed blood-cerebrospinal fluid barrier.  Neuroendocrinology. 1992;  55 174-182
  • 43 Predine J, Brailly S, Delaporte P, Milgrom E. Protein binding of cortisol in human cerebrospinal fluid.  J Clin Endocrinol Metab. 1984;  58 6-11
  • 44 Gao G, Herbert Z, Kong J, Wu D, Gabrielson N, Jirikowski G F, Caldwell J D. Estradiol Control of Estradiol Binding Proteins and Levels in the Medial Preoptic Area, Medial Hypothalamus and Pituitary.  Neuroendocrinology. 2003;  78 61-71
  • 45 Caldwell J D, Moe B D, Hoang J, Nguyen T. Sex hormone-binding globulin stimulates female sexual receptivity.  Brain Res. 2000;  874 24-29
  • 46 Caldwell J D, Hoefle S, Englof I. Sex Hormone Binding Globulin Facilitates female sexual receptivity except when coupled to Dihydrotestosterone.  Brain Research. 2002;  948 102-107
  • 47 Caldwell J D. Evidence of Sex Hormone Binding Globulin Binding sites in the Medial Preoptic Area and Hypothalamus.  Horm Metab Res. 2001;  33 7-9
  • 48 Caldwell J D. A sexual arousability model involving steroid effects at the plasma membrane.  Neurosci Biobehav Rev. 2002;  26 13-30
  • 49 Strel’chyonok O A, Avvakumov G V. Interaction of human CBG with cell membranes.  J Steroid Biochem Mol Biol. 1991;  40 795-803
  • 50 Nakhla A M, Khan M S, Rosner W. Induction of adenylate cyclase in a mammary carcinoma cell line by human corticosteroid-binding globulin.  Biochem Biophys Res Commun. 1988;  153 1012-1018
  • 51 Jezova D, Skultetyova I, Tokarev D I, Bakos P, Vigas M. Vasopressin and oxytocin in stress.  Ann N Y Acad Sci.. 1995;  771 192-203

Prof. Dr. G. F. Jirikowski

Inst. Für Anatomie II

Klinikum der FSU · Teichgraben 7 · 07749 Jena · Germany ·

Fax: +49 (3641) 93 85 52

Email: gjir@mti.uni-jena.de