RSS-Feed abonnieren
DOI: 10.1055/s-2006-925407
Association of Serum Adiponectin Concentration to Lipid and Glucose Metabolism in Healthy Humans
Publikationsverlauf
Received 15 August 2005
Accepted after revision 19 December 2005
Publikationsdatum:
23. Mai 2006 (online)
Abstract
Background: Adiponectin is a recently discovered plasma protein with many associations to glucose and lipid metabolism. Due to its central role in cardiovascular diseases and insulin resistance, we studied the relationship between serum adiponectin and factors reflecting glucose and lipid metabolism. Methods and Results: Thirty healthy participants (20M/10F, age 32.0 ± 2.1 years, BMI 25.8 ± 0.9 kg/m2 and HbA1c 5.2 ± 0.1 %) were studied four times at approximately one week intervals. The effects of a 4-hour euglycemic hyperinsulinemia (40 mU/m2/min), saline infusion (control), oral glucose, and oral fat load on serum adiponectin were studied. No significant correlation was found between serum adiponectin and insulin sensitivity before (r = 0.25) or after adjustment for age, BMI and gender (r = 0.04). Adiponectin concentration correlated inversely with HbA1c (r = - 0.43, p < 0.05), insulin concentration (r = - 0.38, p < 0.05) and triglyceride concentration (r = - 0.42, p < 0.05) but positively with HDL cholesterol (r = 0.38, p < 0.05). Metabolic procedures had no effect on serum adiponectin. Conclusions: Our findings favor the interpretation that adiponectin is not causally related to insulin sensitivity in healthy participants. The strongest associations of adiponectin in healthy participants are to be found to lipid metabolism. Serum levels of adiponectin are very stable and not acutely affected by hyperinsulinemia, oral glucose or fat load.
Key words
Adiponectin - insulin sensitivity - HbA1c - triglycerides - HDL cholesterol
References
- 1 Hu E, Liang P, Spiegelman B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996; 271 10 697-10 703
- 2 Shapiro L, Scherer P E. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol. 1998; 8 335-338
- 3 Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita Y, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules. Adipocyte-derived plasma protein adiponectin. Circulation. 1999; 100 2473-2476
- 4 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa . Adiponectin, an adipocyte-derived plasma protein inhibits endothelial NF-kB signaling through a cAMP-dependent pathway. Circulation. 2000; 102 1296-1301
- 5 Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner J A, Tomiyama Y, Matsuzawa Y. Adiponectin, a new member of the family of soluble defense collagens negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000; 96 1723-1732
- 6 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J-I, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita Y, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein adiponectin in obesity. Biochem Biophys Res Commun. 1999; 257 79-83
- 7 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel adipose-specific protein, adiponectin in type 2 diabetic patients. Arterioscl Thromb Vasc Biol. 2000; 20 1595-1599
- 8 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley R E, Tataranni P A. Hypoadiponectemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86 1930-1935
- 9 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman M L, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 2001; 7 941-946
- 10 Berg A H, Combs T P, Du X, Brownlee M, Scherer P E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 2001; 7 947-953
- 11 Ebeling P, Bourey R, Koranyi L, Tuominen J A, Groop L C, Henriksson J, Mueckler M, Sovijärvi A, Koivisto V A. Mechanisms of enchanced insulin sensitivity in athletes.Increased blood flow, muscle glucose transport protein(GLUT-4) concentration, and glycogen synthase activity. J Clin Invest. 1993; 92 1623-1631
- 12 DeFronzo R A, Tobin J D, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237 E214-E223
- 13 McGuire E AH, Helderman J H, Tobin J D, Andres R, Berman M. Effects of arterial versus venous sampling on analysis of glucose kinetics in man. J Appl Physiol. 1976; 41 565-573
- 14 Koivisto V A, Yki-Järvinen H, Puhakainen I, Virkamäki A, Kolaczynski J, DeFronzo R. No evidence for isotope discrimination of tritiated glucose tracers in measurements of glucose turnover rates in man. Diabetologia. 1990; 33 168-173
- 15 Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988; 37 287-301
- 16 Hotta K, Funahashi T, Bodkin N L, Ortmeyer H K, Arita Y, Hansen B C, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001; 50 1126-1133
- 17 Weyer C, Tataranni P A, Pratley R E. Insulin action and insulinemia are closely related to the fasting complement C3, but not to acylation stimulating protein concentration. Diabetes Care. 2000; 23 779-785
- 18 Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay R S, Yougren J F, Havel P J, Pratley R E, Bogardus C, Tataranni P A. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosin phosphorylation and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes. 2002; 50 1884-1888
- 19 Baratta R, Amato S, Degano C, Degano C, Farina M G, Patane G, Vigneri R, Frittitta L. Adiponectin relationship with lipid metabolism is independent of body fat mass: Evidence from both cross-sectional and intervention studies. J Clin Endocrinol Metab. 2004; 89 2665-2671
- 20 Ma K, Cabrero A, Saha P K, Kojima H, Li L, Chang B H, Paul A, Chan L. Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem. 2002; 277 34 658-34 661
- 21 Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama M, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Med. 2002; 8 731-737
- 22 Snieder H, Sawtell P A, Ross L, Walker J, Spector T D, Leslie R DG. HbA1c levels are genetically determined even in Type 1 diabetes. Evidence from healthy and diabetic twins. Diabetes. 2001; 50 2858-2863
- 23 Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab. 2002; 87 2764-2769
- 24 Beutler B A, Cerami A. Recombinant interleukin 1 suppresses lipoprotein lipase activity in 3T3-L1 cells. J Immunol. 1985; 135 3969-3971
- 25 Sammalkorpi K, Valtonen V, Kerttula Y, Nikkilä E, Taskinen M-R. Changes in serum lipoprotein pattern induced by acute infections. Metabolism. 1988; 37 859-865
- 26 Sammalkorpi K, Valtonen V, Maury C PJ. Lipoproteins and acute phase response during acute infection. Interrelationships between C-reactive protein and serum amyloid-A protein and lipoproteins. Ann Med. 1990; 22 397-401
- 27 Yang W-S, Lee W-J, Funahashi T, Tanaka S, Matsuzawa Y, Chao C-L, Chen C-L, Tai T-Y, Chuang L-M. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein adiponectin. J Clin Endocrinol Metab. 2001; 86 3815-3819
- 28 Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T. Effects of pioglitazone on metabolic parameters, body fat distribution and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism. 2002; 51 314-317
- 29 Halleux C M, Takahashi M, Delporte M L, Destry R, Funahashi T, Matsuzawa Y, Brichard S M. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue. Biochem Biophys Res Commun. 2001; 288 1102-1107
- 30 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2002; 290 1084-1089
- 31 Bogan J S, Lodish H F. Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. J Cell Biol. 1999; 146 609-620
Maikki K. Heliövaara, M.D.
Helsinki University Central Hospital · Department of Medicine ·
P.O. Box 340 · FIN-00029 HYKS · Finland
Telefon: +358 (9) 47 17 45 07
Fax: +358 (9) 47 17 55 44 ·
eMail: maikki.heliovaara@hus.fi