References and Notes
1a
Grieco P.
Bahsas A.
Tetrahedron Lett.
1988,
29:
5855
1b
Kiselyov AS.
Armstrong RW.
Tetrahedron Lett.
1997,
38:
6163
2a
Campos PJ.
Lamaza I.
Rodriguez MA.
Canal G.
Tetrahedron Lett.
1997,
38:
6741
2b
Clerici A.
Porta O.
Tetrahedron Lett.
1990,
31:
2069
2c
Mellor JM.
Merriman GD.
Tetrahedron
1995,
51:
6115
2d
Povarov LS.
Russ. Chem. Rev.
1967,
36:
656
2e
Lucchini V.
Prato M.
Scorrano G.
Tecilla P.
J. Org. Chem.
1988,
53:
2251
2f
Nomura Y.
Kimura M.
Takeuchi S.
Tomoda S.
Chem. Lett.
1978,
267
2g
Annunziata R.
Cinquini M.
Cozzi F.
Molteni V.
Schupp O.
Tetrahedron
1997,
53:
9715
For the general reviews on hetero Diels-Alder reactions, see:
3a
Weinreb SM.
Staib RR.
Tetrahedron
1982,
38:
3087
3b
Boger DL.
Tetrahedron
1983,
39:
2869
See also:
3c
Babu G.
Perumal PT.
Tetrahedron
1998,
54:
1627
3d
Waldmann H.
Angew. Chem., Int. Ed. Engl.
1988,
27:
274
3e
Kappe CO.
Murphree SS.
Padwa A.
Tetrahedron
1997,
53:
14179
3f
Carruthers W.
Cycloaddition Reactions in Organic Synthesis
Pergamon Press;
Oxford:
1990.
3g
Oppolzer W. In
Comprehensive Organic Synthesis
Vol. 5:
Paquette LA.
Pergamon;
Oxford:
1991.
p.315
3h
Pindur U.
Lutz G.
Otto C.
Chem. Rev.
1993,
93:
741
3i
Waldmann H.
Synthesis
1994,
535
3j
Lipshutz BH.
Chem. Rev.
1986,
86:
795
4a
Kobayashi S.
Nagayama S.
J. Org. Chem.
1996,
61:
2256
4b
Kobayashi S.
Nagayama S.
J. Am. Chem. Soc.
1996,
118:
8977
4c
Kobayashi S.
Ishitani H.
Nagayama S.
Synthesis
1995,
1095
4d
Kobayashi S.
Araki M.
Ishitani H.
Nagayama S.
Hachiya I.
Synlett
1995,
233
4e
Kobayashi S.
Ishitani H.
Nagayama S.
Chem. Lett.
1995,
423
5 For synthesis of tetrahydroquinolines and their biological activity see for example: Katritzky AR.
Rachwal S.
Rachwal B.
Tetrahedron
1996,
52:
15031 ; and references cited therein
6a
Kiselyov AS.
Smith L.
Armstrong RW.
Tetrahedron
1998,
54:
5089
6b
Kiselyov AS.
Smith LS.
Virgilio A.
Armstrong RW.
Tetrahedron
1998,
54:
7987
7a
Schulte JL.
Laschat S.
Kotila S.
Hecht J.
Fröhlich R.
Wibbeling B.
Heterocycles
1996,
43:
2713
7b
Laschat S.
Lauterwein J.
J. Org. Chem.
1993,
58:
2856
7c
Twin H.
Batey RA.
Org. Lett.
2004,
6:
4913
7d
Powell DA.
Batey RA.
Tetrahedron Lett.
2003,
44:
7569
7e
Powell DA.
Batey RA.
Org. Lett.
2002,
4:
2913
8a
Yadav JS.
Reddy BVS.
Narsimhaswamy D.
Lakshmi PN.
Narsimulu K.
Srinivasulu G.
Kunwar AC.
Tetrahedron Lett.
2004,
45:
3493
8b
Gowravaram S.
Venkata RE.
Narjis F.
Yadav JS.
Rama Krishna KVS.
Kunwar AC.
Synthesis
2004,
1150
8c
Gowravaram S.
Reddy EV.
Yadav JS.
Rama Krishna KVS.
Sankar AR.
Tetrahedron Lett.
2002,
43:
4029
9
Zhang D.
Kiselyov AS.
Synlett
2001,
1173
10 Prepared in a 31% overall yield by a three-step procedure, as shown in Scheme
[3]
. The same protocol was used for the synthesis of the respective derivatives of 3- and 4-pyridyl aldehydes (18% and 26% overall yields for the three step sequence, respectively).
11 For preparative chromatography we used a Phenomenex Prodigy 5µ ODS(3) 100A 21.2 mm × 250 mm column on Waters DeltaPrep4000 HPLC instrument. The solvent system was MeCN-H2O (start: 20:80; finish 60:40 ratio; 15 min run; 0.05% of formic acid added) with a flow rate of 20 mL/min.
A derivative of 5-pyrazole aldehyde was attempted as a substrate for the cyclization reaction with 1a under the conditions described above (Scheme 4). However, the only product detected in the reaction mixture was the corresponding imine (73% yield). Attempts to cyclize this intermediate under a variety of experimental conditions, including diverse catalysts (BF3·OEt2, TiCl4, and FeCl3) or temperature (boiling in xylenes or chlorobenzene in the presence of p-TsOH or camphorsulphonic acid) were not successful. This result may be attributed to the unfavorable thermodynamics for the formation of this [5,5] fused system. Notably, the attempted reactions of the 2-pyridyl aldehyde derivatives with a single or no Me substituent at the double bond failed as well, presumably due to the insufficient electron density on the olefinic fragment. Similar difficulties in the intramolecular cycloaddition reactions for the formation of fused have been reported, see for example:
12a
Wu H.-J.
Lin S.-H.
Lin C.-C.
Heterocycles
1994,
38:
1507
12b
Cattal M.
Cossu S.
Fabris F.
DeLucci O.
Synth. Commun.
1996,
26:
637
12c
Burrell SJ.
Derome AE.
Edenborough MS.
Harwood LM.
Leeming SA.
Isaacs NS.
Tetrahedron Lett.
1985,
26:
2229
13
Experimental Procedure.
A solution of aldehyde (1.1 mmol) in MeCN (5 mL) was added to a solution of aniline 1 (1 mmol) in the same solvent (5 mL) followed by 5 mL of TFA. The resulting mixture was stirred for 4 h until LCMS analysis indicated complete conversion of the starting materials to the condensation product(s) 2 or 3. The mixture was concentrated in vacuo to ca. 1 mL, diluted with 25 mL of EtOAc. The organic phase was washed with concentrated NaHCO3 (2 × 20 mL), dried over Na2SO4 and concentrated. For the products 2c/2c′, the precipitate was collected, washed with cold MeCN (1 mL) and Et2O (5 mL) do afford a mixture of diastereomers, 1:1 ratio. The residues were further purified by prep-HPLC to yield analytically pure materials. Isolated ratio of diastereomers 2/2′ or 3/3′ was similar to that observed in the reaction mixtures by 1H NMR and LC MS analyses (ca. 1:1).
Analytical Data for Representative Examples.
rac
-(6a
S
,12a
S
)-9-Fluoro-7,7-dimethyl-5,6,6a,7,12,12a-hexahydrobenzo[
b
][1,10]phenanthroline (
2a): 40% isolated yield, mp 213-215 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 1.35 (s, 6 H), 1.42 (m, 1 H), 1.73 (m, 1 H), 2.46 (m, 1 H), 2.52 (t, J = 7.6 Hz, 1 H), 2.58 (t, J = 7.6 Hz, 1 H), 3.91 (d, J = 7.2 Hz, 1 H), 4.15 (br s, 1 H, exch. D2O), 6.35 (d, J = 8.0 Hz, 1 H), 6.48 (d, J = 8.0 Hz, 1 H), 6.81 (s, 1 H), 7.20 (dd, J
1 = 7.6 Hz, J
2 = 4.0 Hz, 1 H), 7.79 (d, J = 7.6 Hz, 1 H), 8.68 (d, J = 4.0 Hz, 1 H). ESI-MS: m/z = 283 [M + 1], 281 [M - 1]. HRMS: m/z calcd for C18H19FN2: 282.1532; found: 282.1525. Anal. Calcd for C18H19FN2: C, 76.57; H, 6.78; N, 9.92. Found: C, 76.31; H, 6.94; N, 9.75.
rac
-(6a
S
,12a
R
)-9-Fluoro-7,7-dimethyl-5,6,6a,7,12,12a-hexahydrobenzo[
b
][1,10]phenanthroline (2a′): 47% isolated yield, mp 198-200 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 1.37 (s, 6 H), 1.45 (m, 1 H), 1.72 (m, 1 H), 2.49 (m, 1 H), 2.53 (t, J = 7.6 Hz, 1 H), 2.60 (t, J = 7.6 Hz, 1 H), 3.90 (d, J = 3.6 Hz, 1 H), 4.20 (br s, 1 H, exch. D2O), 6.37 (d, J = 8.0 Hz, 1 H), 6.47 (d, J = 8.0 Hz, 1 H), 6.83 (s, 1 H), 7.22 (dd, J
1 = 7.6 Hz, J
2 = 4.0 Hz, 1 H), 7.82 (d, J = 7.6 Hz, 1 H), 8.66 (d, J = 4.0 Hz, 1 H). ESI-MS: m/z = 283 [M + 1], 281 [M - 1]. Anal. Calcd for C18H19FN2: C, 76.57; H, 6.78; N, 9.92. Found: C, 76.33; H, 6.91; N, 9.71.
rac
-(6
S
,12a
S
)-9-Fluoro-7,7-dimethyl-5,6,6a,7,12,12a-hexahydrobenzo[
b
][1,9]phenanthroline (
3a): 36% isolated yield, mp 176-177 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 1.38 (s, 6 H), 1.43 (m, 1 H), 1.72 (m, 1 H), 2.44 (m, 1 H), 2.51 (t, J = 7.6 Hz, 1 H), 2.60 (t, J = 7.6 Hz, 1 H), 3.93 (d, J = 7.2 Hz, 1 H), 4.19 (br s, 1 H, exch. D2O), 6.39 (d, J = 8.0 Hz, 1 H), 6.54 (d, J = 8.0 Hz, 1 H), 6.75 (s, 1 H), 7.33 (d, J = 8.0 Hz, 1 H), 8.54 (d, J = 8.0 Hz, 1 H), 8.81 (s, 1 H). ESI-MS: m/z = 304 [M + 1], 302 [M - 1]. HRMS: m/z calcd for C18H26FN3: 303.2111; found: 303.2105. ESI-MS: m/z = 283 [M + 1], 281 [M - 1]. HRMS: m/z calcd for C18H19FN2: 282.1532; found: 282.1527. Anal. Calcd for C18H19FN2: C, 76.57; H, 6.78; N, 9.92. Found: C, 76.42; H, 6.86; N, 9.76.
rac
-(6a
S
,12a
R
)-9-Fluoro-7,7-dimethyl-5,6,6a,7,12,12a-hexahydrobenzo[
b
][1,9]phenanthroline (3a′): 32% isolated yield, mp 164-165 °C. 1H NMR (400 MHz, DMSO-d
6): δ = 1.39 (s, 6 H), 1.41 (m, 1 H), 1.70 (m, 1 H), 2.47 (m, 1 H), 2.51 (t, J = 7.6 Hz, 1 H), 2.64 (t, J = 7.6 Hz, 1 H), 3.86 (d, J = 3.6 Hz, 1 H), 4.18 (br s, 1 H, exch. D2O), 6.32 (d, J = 8.0 Hz, 1 H), 6.54 (d, J = 8.0 Hz, 1 H), 6.81 (s, 1 H), 7.30 (d, J = 8.0 Hz, 1 H), 8.58 (d, J = 8.0 Hz, 1 H), 8.73 (s, 1 H). ESI-MS: m/z = 283 [M + 1], 281 [M - 1]. Anal. Calcd for C18H19FN2: C, 76.57; H, 6.78; N, 9.92. Found: C, 76.36; H, 6.63; N, 9.77.
14 Observed relevant NOE (Figure
[1]
; shifts of the bridge protons are indicated in ppm).