References and Notes
1 Crystal structure.
2
Buckingham J.
Chem. Soc. Rev.
1969,
37
3a
Kim S.
Yoon J.-Y.
Hydrazones, In Science of Synthesis
Vol. 27:
Padwa A.
Thieme;
Stuttgart:
2004.
p.671-722
3b
Clark JS. In Comprehensive Functional Group Transformations
Vol. 3:
Katritzky A.
Meth-Cohn O.
Rees CW.
Pergamon;
New York:
1995.
p.443
For some recent synthesis of heterocycles, see:
4a
Dubash NP.
Mangu NK.
Satyam A.
Synth. Commun.
2004,
34:
1791
4b
Ancel JE.
El Kaim L.
Gadras A.
Grimaud L.
Jana NK.
Tetrahedron Lett.
2002,
43:
8319
4c
Pete B.
Bitter I.
Harsányi TL.
Heterocycles
2000,
53:
665
4d For the use of hydrazones for efficient Mannich-type coupling with aldehydes and ketones, see: Atlan V.
Bienaymè H.
El Kaim L.
Majee A.
Chem. Commun.
2000,
1585
5
Wagaw S.
Yang BH.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
10251
6
Galiano-Roth A.
Collum DB.
J. Am. Chem. Soc.
1988,
110:
3546
7a
Schröterová L.
Kaiserová H.
Baliharová V.
Velík J.
Geršl V.
Kvasničková E.
Physiol. Res.
2004,
53:
683
7b
Becker EM.
Lovejoy DB.
Greer JM.
Watts R.
Richardson DR.
Brit. J. Pharmacol.
2003,
138:
819
7c
Lovejoy DB.
Richardson DR.
Blood
2002,
100:
666
7d
Wis Vitolo LM.
Hefter GT.
Clare BW.
Webb J.
Inorg. Chim. Acta
1990,
170:
171
8 Kolas T, Patel M, Mortell KH, Matulenko MA, Hakeem AA, Bhatia PA, Wang X, Daanen JF, Latshaw SP, and Stewart AO. inventors; US Patent 200050176727.
; Chem. Abstr. 2005, 143, 735323
9a
Matoliukstyte A.
Lygaitis R.
Grazulevicius JV.
Gaidelis V.
Jankauskas V.
Montrimas E.
Tokarski Z.
Jubran N.
Mol. Cryst. Liq. Cryst.
2005,
427:
419
9b
Ostrauskaite J.
Voska V.
Antulis J.
Gaidelis V.
Jankauskas V.
Grazulevicius JV.
J. Mater. Chem.
2002,
12:
3469
10 Bales SE, Brennan DJ, Gulotty RJ, Haag AP, and Inbasekaran MN. inventors; US patent 5208299.
; Chem. Abstr. 1994, 120, 257039
11
Dumić M.
Kurunčev D.
Kovačevič K.
Polak L.
Kolbah D. In
Houben-Weyl
Vol. X/1:
Thieme Verlag;
Stuttgart:
1971.
p.436-438
12a
Dumić M.
Kurunčev D.
Kovačevič K.
Polak L.
Kolbah D. In
Houben-Weyl
Vol. X/1:
Thieme Verlag;
Stuttgart:
1971.
p.439-442
12b
Cox RA.
Buncel E.
The Chemistry of the Hydroxy, Azo and Azoxy Groups
Patai S.
Wiley-Interscience;
Chichester:
1997.
p.569-602
13
Todd D.
Org. React.
1948,
4:
378
14
Ulven T.
Carlsen PHT.
Eur. J. Org. Chem.
2000,
3971
15a
Enders D.
Kipphardt H.
Org. Synth.
1987,
65:
183
15b
Vicario JL.
Job A.
Wolberg M.
Müller M.
Enders D.
Org. Lett.
2002,
4:
1023
16a
Bramford WR.
Stevens TS.
J. Chem. Soc.
1952,
4735
16b
Shapiro RH.
Org. React.
1976,
23:
405
16c
Adlington RM.
Barrett AGM.
Acc. Chem. Res.
1983,
16:
55
17a
Micó XA.
Ziegler T.
Subramanian LR.
Angew. Chem.
2004,
116:
1424
17b For an application of this method in phthalocyanines, see: Micó XA.
Vagin S.
Subramanian LR.
Ziegler T.
Hanack M.
Eur. J. Org. Chem.
2005,
4328
18
Typical Procedure:
NaH (24 mg, 60% suspension in oil) was added to a stirred solution of diethyl malonate (160 mg, 1 mmol) and 1 (401 mg, 1 mmol) in anhyd toluene (50 mL) at r.t. under argon. The mixture was allowed to stir for 30 min while controlling the progress of reaction by TLC. At the end of this period, EtOAc (100 mL) and H2O (25 mL) were added, and the suspension was treated with concd HCl. The organic phase was separated, dried (Na2SO4), filtered, and solvent was evaporated. The crude product was purified by recrystallization from PE (bp 60-90 °C) to give pure 3.
19 Compound 3: yield 460 mg (82%); mp 89-90 °C (PE). UV/Vis (MeCN): λmax (ε = mol-1 dm3 cm-1) = 233 (8929), 343.50 nm(15521). 1H NMR (400 MHz, CDCl3): δ = 12.99 (s, 1 H, NH), 10.75 (s, 1 H, NH), 7.77 (d, J = 8.08 Hz, 1 Harom), 7.22-7.27 (m, 1 Harom), 7.14-7.18 (m, 1 Harom), 7.07-7.10 (m, 1 Harom) 4.34-4.44 (m, 4 H, CH2), 1.42 (t, J = 8.00 Hz, 3 H, CH3), 1.34 (t, J = 8.00 Hz, 3 H, CH3). 13C NMR (400 MHz, CDCl3): δ = 14.00, 62.10, 118.60, 124.00, 125.60, 125.13, 127.00, 131.00, 161.37, 163.40. MS (FAB): m/z = 562.00 [M+ + 1]. Anal. Calcd for C17H16F9N3O6S: C, 36.37; H, 2.87; N, 7.49; S, 5.71. Found: C, 35.85; H, 2.81; N, 7.27; S, 5.25.
20
Parmerter SM.
Org. React.
1959,
10:
1
21 As an example, compound 5: yield 421 mg (84%); mp 118-119 °C (PE). UV/Vis (MeCN): λmax (ε = mol-1 dm3 cm-1) = 243.50 (12455), 357 nm(15331). 1H NMR (400 MHz, CDCl3): δ = 15.11 (s, 1 H, NH), 7.59-7.61 (m, 1 Harom), 7.40-7.44 (m, 1 Harom), 7.22-7.26 (m, 1 Harom), 7.53 (d, J = 8.08 Hz, 1 Harom) 2.53 (s, 3 H, CH3), 2.47 (s, 3 H, CH3). 13C NMR (400 MHz, CDCl3): δ = 26.69, 31.65, 118.00, 123.25, 126.22, 127.35, 129.45, 133.89, 136.21, 196.83, 198.54. MS (FAB): m/z = 502 [M+ + 1]. Anal. Calcd for C15H12F9N3O4S: C, 35.94; H, 2.41; N, 8.38; S, 6.40. Found: C, 36.10; H, 2.39; N, 8.47; S, 6.39.
22 As an example, compound 6: yield 421 mg (82%); mp 169-170 °C (PE-EtOAc). UV/Vis (MeCN): λmax (ε = mol-1 dm3 cm-1) = 246 (9883), 387.50 nm (11819). 1H NMR (400 MHz, acetone-d
6): δ = 15.35 (s, 1 H, NH), 7.92 (d, J = 8.32 Hz, 1 Harom), 7.54-7.60 (m, 2 Harom), 7.33-7.40 (m, 1 Harom), 5.62 (s, 1 H, =CH) 2.78 (t, J = 6.32 Hz, 2 H, COCH2), 2.68 (t, J = 6.44 Hz, 2 H, HCOCH2), 2.11 (m, 2 H, COCH2CH
2). 13C NMR (400 MHz, acetone-d
6): δ = 19.00, 55.00, 39.60, 118.40, 123.64, 127.14, 130.20, 131.20, 140.00, 199.00, 193.40. MS (FAB): m/z = 514 [M+ + 1]. Anal. Calcd for C16H12F9N3O4S: C, 37.44; H, 2.36; N, 8.19; S, 6.25. Found: C, 37.63; H, 2.39; N, 8.04; S, 6.18.
23 CCDC No. 294289 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; or deposit@ccdc.cam.ac.uk].
24 We thank one of the referees for pointing out this interesting possibility.