References and Notes
For general reviews on asymmetric synthesis of α-amino acids via homologation of chiral equivalents of nucleophilic glycine, see:
1a
Williams RM. In
Synthesis of Optically Active α-Amino Acids
Baldwin JE.
Organic Chemistry Series, Pergamon Press;
Oxford:
1989.
1b
Duthaler RO.
Tetrahedron
1994,
50:
1539
1c
Cativiela C.
Diaz-De-Villegas MD.
Tetrahedron: Asymmetry
1998,
9:
3517
1d
Cativiela C.
Diaz-De-Villegas MD.
Tetrahedron: Asymmetry
2000,
11:
645
For selected recent reviews, see:
1e
Calmes M.
Daunis J.
Amino Acids
1999,
16:
215
1f
Bouifraden S.
Drouot C.
El Hadrami M.
Guenoun F.
Lecointe L.
Mai N.
Paris M.
Pothion C.
Sadoune M.
Sauvagnat B.
Amblard M.
Aubagnac JL.
Calmes M.
Chevallet P.
Daunis J.
Enjalbal C.
Fehrentz JA.
Lamaty F.
Lavergne JP.
Lazaro R.
Rolland V.
Roumestant ML.
Viallefont P.
Vidal Y.
Martinez J.
Amino Acids
1999,
16:
345
1g
Sutherland A.
Willis CL.
Nat. Prod. Rep.
2000,
17:
621
1h
Beller M.
Eckert M.
Angew. Chem. Int. Ed.
2000,
39:
1010
1i
Kawabata T.
Fuji K.
Synth. Org. Chem. Jpn.
2000,
58:
1095
1j
Kazmaier U.
Maier S.
Zumpe FL.
Synlett
2000,
1523
1k
Yao SL.
Saaby S.
Hazell RG.
Jorgensen KA.
Chem. Eur. J.
2000,
6:
2435
1l
Abellan T.
Chinchilla R.
Galindo N.
Guillena G.
Najera C.
Sansano JM.
Eur. J. Org. Chem.
2000,
2689
1m
Rutjes FPJT.
Wolf LB.
Schoemaker HE.
J. Chem. Soc., Perkin Trans. 1
2000,
4197
1n
Shioiri T.
Hamada Y.
Synlett
2001,
184
1o
Soloshonok VA.
Curr. Org. Chem.
2002,
6:
341
2 For the recent collection of leading papers on asymmetric synthesis of amino acids, see: ‘Asymmetric Synthesis of Novel Sterically Constrained Amino Acids’, Tetrahedron Symposia-in-Print; # 88; Guest Editors: Hruby, V. J. and Soloshonok, V. A.; Tetrahedron
2001,
57 (30):
‘Operationally Convenient Conditions’ is a significant issue in the development of contemporary organic synthetic methodology.
3a
Taylor SM.
Yamada T.
Ueki H.
Soloshonok VA.
Tetrahedron Lett.
2004,
45:
9159
3b
Soloshonok VA.
Berbasov DO.
J. Fluorine Chem.
2004,
125:
1757
4a
Soloshonok VA.
Ueki H.
Ellis TK.
Tetrahedron Lett.
2005,
46:
941
4b
Soloshonok VA.
Ueki H.
Ellis TK.
Yamada T.
Ohfune Y.
Tetrahedron Lett.
2005,
46:
1107
For recent general reviews on combinatorial chemistry, see:
5a
Young SS.
Ge N.
Curr. Opin. Drug Discovery Dev.
2004,
7:
318
5b
Maltais R.
Tremblay MR.
Ciobanu LC.
Poirier D.
J. Comb. Chem.
2004,
6:
443
5c
Burke MD.
Schreiber SL.
Angew. Chem. Int. Ed.
2004,
43:
46
5d
Maclean D.
Martin EJ.
J. Comb. Chem.
2004,
6:
1
6a
Trost BM.
Acc. Chem. Res.
2002,
35:
695
6b
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
6c
Trost BM.
Science
1991,
254:
1471
7
Hornback JM.
Organic Chemistry
Brooks/Cole Publishing Company;
New York:
1998.
p.361-364
8 For recent applications of Hünig’s base for the efficient synthesis of tertiary amines, see: Moore JL.
Taylor SM.
Soloshonok VA.
ARKIVOC
2005,
(vi):
287
9a Although Professor Hegedus does mention that the complexation of a secondary amino group to Ni(II) was not sufficient to create the desired chemoselectivity of O-H over N-H acylation, he does introduce the idea of using it as a form of protection. See: Hegedus LS.
Greenberg MM.
Wendling JJ.
Bullock JP.
J. Org. Chem.
2003,
68:
4179
9b
Patinec V.
Gardinier I.
Yaouanc JJ.
Clement J.-C.
Handel H.
des Abbayes H.
Inorg. Chim. Acta
1996,
244:
105
For previous papers from this groups related to the synthesis of stereochemically defined C-substituted glutamic acids and their derivatives, see:
10a
Soloshonok VA.
Avilov DV.
Kukhar’ VP.
Meervelt LV.
Mischenko N.
Tetrahedron Lett.
1997,
38:
4903
10b
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Mischenko N.
Tetrahedron
1999,
55:
12031
10c
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Tetrahedron
1999,
55:
12045
10d
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron: Asymmetry
1999,
10:
4265
10e
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
135
10f
Soloshonok VA.
Cai C.
Hruby VJ.
Angew. Chem. Int. Ed.
2000,
39:
2172
10g
Soloshonok VA.
Cai C.
Hruby VJ.
Org. Lett.
2000,
2:
747
10h
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Yamazaki T.
J. Org. Chem.
2000,
20:
6688
10i
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
9645
10j
Cai C.
Soloshonok VA.
Hruby VJ.
J. Org Chem.
2001,
66:
1339
10k
Soloshonok VA.
Ueki H.
Jiang C.
Cai C.
Hruby VJ.
Helv. Chim. Acta
2002,
85:
3616
10l
Soloshonok VA.
Ueki H.
Tiwari R.
Cai C.
Hruby VJ.
J. Org. Chem.
2004,
69:
4984
10m
Cai C.
Yamada T.
Tiwari R.
Hruby VJ.
Soloshonok VA.
Tetrahedron Lett.
2004,
45:
6855
10n
Soloshonok VA.
Cai C.
Yamada T.
Ueki H.
Ohfune Y.
Hruby VJ.
J. Am. Chem. Soc.
2005,
127:
15296
11
Synthesis of the Ni(II) Complexes of Glycine Schiff Bases with N
-(2-Benzoylphenyl)-2-(alkylamino)acetamides 9a-c; General Procedure.
A solution of KOH (10 equiv) in MeOH (7 mL/1 g of KOH) was added to a suspension of N-(2-benzoylphenyl)-2-(alkylamino)acetamides 8a-c (1 equiv), glycine (5 equiv), nickel nitrate hexahydrate (2 equiv) in MeOH (10 mL/1 g of 8a-c) at 60-70 °C. Upon complete consumption of the N-(2-benzoylphenyl)-2-(alkylamino)acetamides 8a-c, monitored by TLC, the reaction mixture was poured over slurry of ice and 5% AcOH. After the complete precipitation, product 9a-c was filtered and dried in a low temperature oven (50 °C) overnight. The product was obtained in high chemical yield (99%) and high chemical purity without further purification.
Compound 9a: mp >300 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.95 (1 H, br s), 3.45 (2 H, s), 3.86 (2 H, s), 7.01 (1 H, td, J = 7.65, 0.72 Hz), 7.13-7.29 (3 H, m), 7.30-7.60 (7 H, m), 7.62-7.78 (2 H, m), 8.64 (1 H, dd, J = 8.4, 0.3 Hz), 11.66 (1 H, br s). 13C NMR (75.42 MHz, CDCl3): δ = 52.90, 54.10, 121.68, 122.32, 124.82, 125.55, 125.71, 127.30, 127.40, 128.32, 128.45, 128.48, 130.17, 132.62, 132.82, 133.66, 138.47, 139.12, 139.26, 171.19, 198.32. HRMS: m/z calcd for C22H20N2NaO2: 367.1417; found: 367.1103.
Compound 9b: mp 292.3 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.56 (3 H, d, J = 6.3 Hz), 1.66 (3 H, d, J = 6.3 Hz), 2.76 (1 H, br s), 3.12 (1 H, dq, J = 13.2, 6.3 Hz), 3.29 (1 H, d, J = 17.7 Hz), 3.75 (2 H, s), 3.99 (1 H, dd, J = 17.7, 7.5 Hz), 6.83 (1 H, m), 6.93 (1 H, m), 7.01 (1 H, m), 7.19 (1 H, m), 7.35 (1 H, m), 7.53-7.59 (3 H, m), 8.55 (1 H, d, J = 7.8 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 20.57, 21.74, 51.70, 53.33, 60.60, 121.28, 128.34, 125.69, 125.82, 136.24, 129.45, 129.75, 129.88, 132.66, 133.60, 134.66, 142.62, 173.23, 177.88, 177.91, 178.18. HRMS: m/z calcd for C20H21N3NaNiO3: 432.0828; found: 432.0837.
Compound 9c: mp >300 °C (decomp.). 1H NMR (299.95 MHz, CDCl3): δ = 1.54 (9 H, s), 2.60 (1 H, d, J = 7.8 Hz), 3.41 (1 H, d, J = 17.1 Hz), 3.73 (2 H, d, J = 3.9 Hz), 4.17 (1 H, dd, J = 17.1, 7.5 Hz), 6.84 (1 H, m), 6.93 (1 H, dd, J = 8.1, 1.8 Hz), 6.99 (1 H, m), 7.23 (1 H, m), 7.38 (1 H, m), 7.53-7.60 (3 H, m), 8.37 (1 H, d, J = 7.5 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 28.02, 50.98, 58.25, 60.42, 121.33, 124.24, 125.71, 126.27, 129.41, 129.79, 129.90, 132.72, 133.50, 134.54, 142.38, 171.74, 177.36, 177.72. HRMS: m/z calcd for C21H23N3NaNiO3: 446.0985; found: 446.1015.
The Michael Addition of the Oxazolidinone Derived Amides of Cinnamic Acid and Nucleophilic Glycine Equivalents 9a-c; General Procedure.
To a flask containing 9a, 9b, or 9c (0.10 g), 3-[(E)-3-alkyl-acryloyl]oxazolidin-2-one 20a,b (1.05 equiv) and 3 mL of DMF, DBU (15 mol%) was added to the reaction mixture, which was stirred at r.t. and monitored by TLC. After disappearance of starting glycine equivalent by TLC, the reaction mixture was poured into a beaker containing 100 mL ice water. After the ice had melted the corresponding product 21a,b, 22, 23, was filtered from the aqueous solution and dried in an oven to afford the corresponding product in high chemical yields.
Compound 23: mp 146.3 °C. 1H NMR (299.95 MHz, CDCl3): δ = 2.66-2.89 (4 H, m), 3.25-3.42 (3 H, m), 3.85 (1 H, dd, J = 16.2, 6.0 Hz), 4.18 (1 H, dd, J = 8.7, 3.9 Hz), 4.43 (1 H, d, J = 4.2 Hz), 4.60 (1 H, t, J = 8.7 Hz), 5.18 (1 H, dd, J = 8.7, 3.9 Hz), 6.71-6.84 (3 H, m), 6.97-7.01 (2 H, m), 7.05 (1 H, d, J = 6.9 Hz), 7.11-7.14 (2 H, m), 7.23-7.47 (10 H, m), 7.56-7.59 (2 H, m), 7.67-7.73 (3 H, m), 8.38 (1 H, d, J = 8.7 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 36.44, 45.18, 53.08, 54.69, 57.47, 69.75, 73.38, 121.04, 123.85, 125.72, 125.86, 126.88, 126.96, 127.24, 127.97, 128.28, 128.37, 128.74, 128.89, 129.14, 129.62, 129.79, 130.72, 132.57, 133.53, 133.61, 133.98, 138.72, 132.84, 139.24, 142.93, 169.89, 171.02, 175.94, 176.60, 177.47. HRMS: m/z calcd for C42H36N4NaNiO6: 773.1880; found: 773.1813.
Compound 22: mp 183.1 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.29 (3 H, d, J = 6.6 Hz), 1.37 (3 H, d, J = 6.6 Hz), 2.67 (1 H, s), 2.74 (1 H, h, J = 6.6 Hz), 2.86 (1 H, d, J = 16.5 Hz), 3.18-3.30 (2 H, m), 3.56 (1 H, dd, J = 18.6, 8.7 Hz), 3.72 (1 H, dd, J = 18.6, 8.7 Hz), 4.20 (1 H, dd, J = 8.7, 3.9 Hz), 4.49 (1 H, d, J = 4.5 Hz), 4.63 (1 H, t, J = 9.0 Hz), 5.18 (1 H, dd, J = 8.7, 3.9Hz), 6.74 (1 H, d, J = 2.7 Hz), 6.99-7.05 (3 H, m), 7.24 (1 h, d, J = 2.7 Hz), 7.27 (1 H, d, J = 2.7 Hz), 7.28-7.33 (5 H, m), 7.37 (1 H, t, J = 7.2 Hz), 7.47-7.52 (3 H, m), 7.56-7.62 (3 H, m), 8.40 (1 H, d, J = 9.3 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 20.22, 21.44, 29.30, 44.95, 52.75, 53.78, 57.47, 69.77, 73.29, 124.67, 125.66, 125.91, 127.27, 127.95, 128.31, 128.42, 128.49, 128.75, 128.88, 129.33, 129.42, 130.32, 130.80, 132.57, 132.70, 132.86, 138.82, 139.21, 141.57, 153.35, 169.80, 169.98, 176.94, 177.08. HRMS: m/z calcd for C38H36N4NaNiO6: 759.1501; found: 759.1584.
Compound 21b: mp 183.1 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.28 (9 H, s), 2.67 (1 H, s), 2.97 (1 H, d, J = 16.8 Hz), 3.20-3.37 (2 H, m), 3.51 (1 H, dd, J = 17.7, 8.4 Hz), 3.74 (1 H, dd, J = 17.7, 8.4 Hz), 4.17 (1 H, dd, J = 9, 3.9 Hz), 4.46 (1 H, d, J = 4.5 Hz), 4.61 (1 H, t, J = 8.7 Hz), 5.18 (1 H, dd, J = 8.7, 3.6 Hz), 6.79 (1 H, m), 6.98-7.03 (3 H, m), 7.26-7.38 (7 H, m), 7.43-7.49 (3 H, m), 7.54-7.63 (4 H, m), 8.23 (1 H, d, J = 8.4 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 27.78, 36.55, 44.93, 50.81, 57.45, 59.70, 69.72, 72.53, 120.89, 123.10, 125.81, 127.34, 127.63, 128.24, 128.32, 128.82, 128.87, 129.03, 129.18, 129.97, 130.62, 132.88, 133.62, 133.94, 138.83, 139.11, 142.79, 153.29, 169.99, 170.83, 176.36, 177.20. HRMS: m/z calcd for C39H39N4NiO6: 739.2037; found: 739.2078.
Compound 21a: mp 153.7 °C. 1H NMR (299.95 MHz, CDCl3): δ = 1.43 (9 H, s), 1.91 (3 H, s), 3.04 (1 H, dd, J = 18.3, 7.2 Hz), 3.24 (1 H, dd, J = 18.3, 7.2 Hz), 3.39 (1 H, d, J = 17.1 Hz), 4.16 (1 H, d, J = 4.5 Hz), 4.22 (1 H, dd, J = 9.0, 3.6 Hz), 4.39 (1 H, q, J = 17.1, 7.2 Hz), 4.61 (1 H, t, J = 8.7 Hz), 5.28 (1 H, dd, J = 8.7, 3.3 Hz), 6.78 (2 H, d, J = 4.8 Hz), 6.94 (1 H, d, J = 7.8 Hz), 7.25 (2 H, m), 7.30-7.47 (7 H, m), 7.53 (1 H, t, J = 7.8 Hz), 8.37 (1 H, d, J = 8.4 Hz). 13C NMR (75.42 MHz, CDCl3): δ = 16.85, 27.97, 33.75, 38.94, 51.51, 57.50, 57.89, 69.93, 72.32, 120.98, 123.04, 126.09, 127.33, 127.81, 128.59, 128.83, 129.03, 129.09, 129.85, 132.88, 133.68, 134.00, 139.23, 142.73, 153.55, 170.46, 171.24, 177.12, 177.78. HRMS: m/z calcd for C34H36N4NiO6: 677.1880; found: 677.1918.
For the general procedure for the disassembly of the Ni(II) Schiff base complexes see:
12a
Soloshonok VA.
Ueki H.
Ellis TK.
Yamada T.
Ohfune Y.
Tetrahedron Lett.
2005,
46:
1107
12b
Ellis TK.
Ueki H.
Soloshonok VA.
Tetrahedron Lett.
2005,
46:
941