Abstract
A highly efficient sulfur-catalyzed oxidative carbonylation of aliphatic amines and aliphatic β-amino alcohols to ureas and 2-oxazolidinones, respectively, was developed. Sodium nitrite was involved in the reoxidation of hydrogen sulfide to sulfur in the catalytic oxidative carbonylation cycle.
Key words
sulfur - oxidative carbonylation - amine - β-aminoalcohol - catalysis
References and Notes
1a
Dunetz JR.
Danheiser RL.
Org. Lett.
2003,
5:
4011
1b
Ferraccioli R.
Carenzi D.
Synthesis
2003,
1383
1c
Lee SH.
Clapham B.
Koch G.
Zimmermann J.
Janda KD.
Org. Lett.
2003,
5:
511
1d
Yoshida H.
Shirakawa E.
Honda Y.
Hiyama T.
Angew. Chem. Int. Ed.
2002,
41:
3247
1e
Humphrey JM.
Liao YS.
Ali A.
Rein T.
Wong YL.
Chen HJ.
Courtney AK.
Martin SF.
J. Am. Chem. Soc.
2002,
124:
8584
2a
Seydenpenne J.
Chiral Auxiliaries and Ligands in Asymmetric Synthesis
Wiley;
New York:
1995.
2b
Ager DJ.
Prakash I.
Schaad DR.
Chem. Rev.
1996,
96:
835
2c
Catalytic Asymmetric Synthesis
Ojima I.
Wiley;
New York:
2000.
3a
Bigi F.
Maggi R.
Sartori G.
Green Chem.
2000,
2:
140
3b
Maya I.
Lopez O.
Maza S.
Fernandez-Bolanos JG.
Fuentes J.
Tetrahedron Lett.
2003,
44:
8539
3c
Grzyb JA.
Batey RA.
Tetrahedron Lett.
2003,
44:
7485
3d
Lemoucheux L.
Rouden J.
Ibazizene M.
Sobrio F.
Lasne MC.
J. Org. Chem.
2003,
68:
7289
3e
Reddy PVG.
Babu YH.
Reddy CS.
J. Heterocycl. Chem.
2003,
40:
535
4a
Nomura R.
Hasegawa Y.
Ishimoto M.
Toyosaki T.
Matsuda H.
J. Org. Chem.
1992,
57:
7339
4b
Bigi F.
Maggi R.
Sartori G.
Green Chem.
2000,
2:
140
4c
Alba M.
Choi J.
Sakakura T.
Chem. Commun.
2001,
2238
4d
Abla M.
Choi J.-C.
Sakakura T.
Green Chem.
2004,
6:
524
5a
Minisci F.
Coppa F.
Fontana F.
Chem. Commun.
1994,
679
5b
Shi F.
Deng Y.
SiMa T.
Peng J.
Gu Y.
Qiao B.
Angew. Chem. Int. Ed.
2003,
42:
3257
6
Giannoccaro P.
De Giglio E.
Gargano M.
Aresta M.
Ferragina C.
J. Mol. Catal. A: Chem.
2000,
157:
131
7a
Shi F.
Deng Y.
SiMa T.
Yang H.
Tetrahedron Lett.
2001,
42:
2161
7b
Mulla SAR.
Rode CV.
Kelkar AA.
Gupte SP.
J. Mol. Catal.
1997,
122:
103
8a
Yang H.
Deng Y.
Shi F.
J. Mol. Catal. A: Chem.
2001,
176:
73
8b
Chiarotto I.
Feroci M.
J. Org. Chem.
2003,
68:
7137
8c
Gabriele B.
Mancuso R.
Salerno G.
Costa M.
J. Org. Chem.
2003,
68:
601
8d
Gabriele B.
Salerno G.
Mancuso R.
Costa M.
J. Org. Chem.
2004,
69:
4741
8e
Gabriele B.
Salerno G.
Brindisi D.
Costa M.
Chiusoli GP.
Org. Lett.
2000,
2:
625
8f
Gabriele B.
Mancuso R.
Salerno G.
Costa M.
Chem. Commun.
2003,
4:
486
9a
Sonoda N.
Pure Appl. Chem.
1993,
65:
699
9b
Kondo K.
Murata K.
Miyoshi N.
Murai S.
Sonoda N.
Synthesis
1979,
735
9c
Kondo K.
Yokoyama S.
Miyoshi N.
Murai S.
Sonoda N.
Angew. Chem., Int. Ed. Engl.
1979,
18:
692
10a
Franz RA.
Applegath F.
J. Org. Chem.
1961,
26:
3304
10b
Franz RA.
Applegath F.
Morriss FV.
Baiocchi F.
J. Org. Chem.
1961,
26:
3306
10c
Franz RA.
Applegath F.
Morriss FV.
Baiocchi F.
Bolze C.
J. Org. Chem.
1961,
26:
3309
10d
Franz RA.
Applegath F.
Morriss FV.
Baiocchi F.
Breed LW.
J. Org. Chem.
1962,
27:
4341
11
Liu R.
Liang X.
Dong C.
Hu X.
J. Am. Chem. Soc.
2004,
126:
4112
12
General Experimental Procedure.
All oxidative carbonylation experiments were carried out in a 100 mL autoclave equipped with magnetic stirring and automatic temperature control. The amine or ethanolamine (20 mmol), sulfur (1 mmol), NaNO2 (10 mmol), and MeOH (6 mL) were charged into the reactor. Then, the autoclave was flushed three times with CO and pressurized with CO to a pressure of 40 atm. The autoclave was placed in oil bath that was preheated to 120 °C, and the whole reaction mixture was stirred for 10 h. After the reaction, the autoclave was cooled, excess gas was purged, and the reaction mixture was filtered. Qualitative analyses were conducted with a HP 6890/5973 GCMS and quantitative analyses were carried out over a Agilent 6820 GC (FID detector).