Abstract
Alkylidenecyclopropanes undergo CAN-mediated addition reactions with 1,3-dicarbonyl compounds or ring rearrangement reactions leading to dihydrofuran and cyclobutanone derivatives, respectively, in moderate yields.
Key words
methylenecyclopropanes - ammonium cerium(IV) nitrate - 1,3-dicarbonyl compounds - dihydrofuran - cyclobutanone
References
1a
Brandi A.
Goti A.
Chem. Rev.
1998,
98:
589
1b
Brandi A.
Cicchi S.
Cordero FM.
Goti A.
Chem. Rev.
2003,
103:
1213
1c
Yamago S.
Nakamura E.
Org. React.
2002,
61:
1
1d
Nakamura E.
Yamago S.
Acc. Chem. Res.
2002,
35:
867
1e
Yamago S.
Takeichi A.
Nakamura E.
Synthesis
1996,
1380
2a
Binger P.
Büch H.
M .
Top. Curr. Chem.
1987,
135:
77
2b
Ohta T.
Takaya H. In
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Pergamon;
Oxford:
1991.
p.1185
2c
Suginome M.
Matsuda T.
Ito Y.
J. Am. Chem. Soc.
2000,
122:
11015
2d
Nakamura I.
Saito S.
Yamamoto Y.
J. Am. Chem. Soc.
2000,
122:
2661
2e
Oh BH.
Nakamura I.
Saito S.
Yamamoto Y.
Tetrahedron Lett.
2001,
42:
6203
2f
Camacho DH.
Nakamura I.
Saito S.
Yamamoto Y.
J. Org. Chem.
2001,
66:
270
2g
Nakamura I.
Oh BH.
Saito S.
Yamamoto Y.
Angew. Chem. Int. Ed.
2001,
40:
1298
2h
Nakamura I.
Siriwardana AI.
Saito S.
Yamamoto Y.
J. Org. Chem.
2002,
67:
3445
2i
Camacho DH.
Nakamura I.
Oh BH.
Saito S.
Yamamoto Y.
Tetrahedron Lett.
2002,
43:
2903
2j
Siriwardana AI.
Nakamura I.
Yamamoto Y.
Tetrahedron Lett.
2003,
44:
985
2k
Xu B.
Shi M.
Org. Lett.
2003,
5:
1415
2l
Ma S.
Lu L.
Zhang J.
J. Am. Chem. Soc.
2004,
126:
9645
2m
López F.
Delgado A.
Rodriguez JR.
Castedo L.
Mascareñas JL.
J. Am. Chem. Soc.
2004,
126:
10262
2n
Nötzel MW.
Tamm M.
Labahn T.
Noltemeyer M.
Es-Sayed M.
de Meijere A.
J. Org. Chem.
2000,
65:
3850
2o
Nötzel MW.
Labahn T.
Es-Sayed M.
de Meijere A.
Eur. J. Org. Chem.
2001,
3025
2p
Nakamura I.
Yamamoto Y.
Adv. Synth. Catal.
2002,
344:
111
3a
Melikyan GG.
Org. React.
1997,
49:
427
3b
Snider BB.
Chem. Rev.
1996,
96:
339
3c
Linker T.
J. Organomet. Chem.
2002,
661:
159
3d
Nair V.
Mathew J.
Prabhakaran J.
Chem. Soc. Rev.
1997,
127
3e
Vinogradov MG.
Kondorsky AE.
Nikishin GI.
Synthesis
1988,
60
3f
Lee YR.
Suk JY.
Kim BS.
Org. Lett.
2000,
2:
1387
3g
Hong BC.
Shen IC.
Liao JH.
Tetrahedron Lett.
2001,
42:
935
4a
Nair V.
Balagopal L.
Rajan R.
Mathew J.
Acc. Chem. Res.
2004,
37:
21
4b
Nair V.
Mathew J.
Radhakrishnan KV.
J. Chem. Soc., Perkin Trans. 1
1996,
1487
4c
Kajikawa S.
Nishino H.
Kurosawa K.
Heterocycles
2001,
54:
171
4d
Lee YR.
Kim BS.
Kim DH.
Tetrahedron
2000,
56:
8845
4e
Miura M.
Arai N.
Narasaka K.
Bull. Chem. Soc. Jpn.
1998,
71:
1437
4f
Lee YR.
Byun MW.
Kim BS.
Bull. Korean Chem. Soc.
1998,
19:
1080
4g
Nair V.
Mathew J.
Kanakamma PP.
Panicker SB.
Sheeba V.
Zeena S.
Eigendorf GK.
Tetrahedron Lett.
1997,
38:
2191
4h
Nair V.
Sheeba V.
Panicker SB.
George TG.
Rajan R.
Balagopal L.
Vairamani M.
Prabhakar S.
Tetrahedron
2000,
56:
2461
For radical reactions related to MCPs, see:
5a
Mizuno K.
Nire K.
Sugita H.
Otsuji Y.
Tetrahedron Lett.
1993,
34:
6563
5b
Mizuno K.
Maeda H.
Sugita H.
Nishioka S.
Hirai T.
Sugimoto A.
Org. Lett.
2001,
3:
581
5c
Legrand N.
Quiclet-Sire B.
Zard SZ.
Tetrahedron Lett.
2000,
41:
9815
5d
Destabel C.
Kilburn JD.
Knight J.
Tetrahedron
1994,
50:
11267
5e
Boffey RJ.
Santagostino M.
Whittingham WG.
Kilburn JD.
Chem. Commun.
1998,
1875
5f
Pike KG.
Destabel C.
Anson M.
Kilburn JD.
Tetrahedron Lett.
1998,
39:
5877
5g
Boffey RJ.
Whittingham WG.
Kilburn JD.
J. Chem. Soc., Perkin Trans. 1
2001,
487
5h
Kozhushkov SI.
Brandl M.
de Meijere A.
Eur. J. Org.Chem.
1998,
1535
5i
Xu B.
Chen Y.
Shi M.
Tetrahedron Lett.
2002,
43:
2781
5j
de Lijser HJP.
Cameron TS.
Arnold DR.
Can. J. Chem.
1997,
75:
1795
For some of the most recent results from this group, see:
6a
Huang X.
Chen WL.
Zhou HW.
Synlett
2004,
329
6b
Huang X.
Zhou H.
Chen W.
J. Org. Chem.
2004,
69:
839
6c
Chen W.
Huang X.
Zhou H.
Synthesis
2004,
1573
6d
Zhou H.
Huang X.
Chen W.
J. Org. Chem.
2004,
69:
5471
7 X-ray crystal data for compound 3a : C22 H20 O2 , MW = 316.38, Monoclinic, space group P 21 /n , a = 9.9482 (12), b = 12.0846 (14), c = 13.6979 (16) Å, α = 90, β = 99.745 (2), γ = 90, V = 1623.0(3) Å3 , T = 293 (2) K, Z = 4, ρcalcd = 1.295 Mg/m3 , µ = 0.081 mm-1 , λ = 0.71073 Å, F(000) 672.00, independent reflections (R
int = 0.0794), 9396 reflections collected; refinement method, full-matrix least-squares refinement on F2 ; Goodness-of-fit on F2 = 0.907; Final R indices [I > 2σ(I)] R 1 = 0.0470, wR 2 = 0.0913.
8 MCPs 1 are not very soluble in CH3 CN, therefore the co-solvent THF is required.
The cyclopropylmethyl radical is stabilized by the substituents on MCP, which does not undergo a cyclopropyl ring-opening radical rearrangement. It is further oxidized by a second equivalent of CAN to give the more stable cyclopropylcarbinyl cation, see:
9a
Bowry VW.
Lusztyk J.
Ingold KU.
Chem. Commun.
1990,
92
In addition some 3-exo -trig processes have been described recently:
9b
Sakuma D.
Togo H.
Synlett
2004,
2501
9c
David H.
Afonso C.
Bonin M.
Doisneau G.
Guillerez M.-G.
Guibé F.
Tetrahedron Lett.
1999,
40:
8557
9d
Gansauer A.
Lauterbach T.
Gimbel-Geich D.
Chem. Eur. J.
2004,
10:
4983
For a stable cyclopropylcarbinyl cation, see:
10a
Klunder AJH.
Zwanenburg B. In
Houben-Weyl, Methoden der organischen Chemie
Vol. E17c:
de Meijere A.
Thieme;
Stuttgart:
1977.
p.2419
10b
March J.
Advanced Organic Chemistry
4th ed.:
Wiley;
New York:
1992.
p.169 ; and references cited therein
Shi has reported the ring-expansion of MCPs in the presence of DIAD or DEAD and Lewis acids in wet CH3 CN, see:
11a
Shao LX.
Shi M.
Eur. J. Org. Chem.
2004,
426
11b de Meijere has previously reported cycloadditions onto a unique olefin bicyclopropylidene in which the cyclobutanone was formed in the reaction between bicyclopropylidene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in wet acetone, see: de Meijere A.
Erden I.
Weber W.
Kaufmann D.
J. Org. Chem.
1988,
53:
152
12 Due to the poor solubility of MCPs in H2 O, we added THF as the co-solvent (THF-H2 O, 4:1).
13
Trahanovsky WS.
Young LB.
Brown GL.
J. Org. Chem.
1967,
32:
3865
14
Miyashi T.
Roth HD.
Schilling MLM.
Takahashi Y.
Mukai T.
J. Am. Chem. Soc.
1985,
107:
1079
15 During the preparation of our manuscript, manganese(III)-mediated oxidative annulation of MCPs with 1,3-dicarbonyl compounds was reported, see: Huang JW.
Shi M.
J. Org. Chem.
2005,
70:
3859
Such cyclobutanones can be formed in the reactions between MCPs and peracetic acid or MCPBA.
16a
Crandall JK.
Conover WW.
J. Org. Chem.
1978,
43:
3533
16b
Aue DH.
Meshishnek MJ.
Shellhamer DF.
Tetrahedron Lett.
1973,
14:
4799 ; and reference 3 therein
16c
Salaün JR.
Conia JM.
J. Chem. Soc., Chem. Commun.
1971,
1579
For some more papers related to the formation of cyclobutanones, see:
16d
Trost BM.
Preckel M.
Leichter LM.
J. Am. Chem. Soc.
1975,
97:
2224
16e
Frank D.
Kozhushkov SI.
Labahn T.
de Meijere A.
Tetrahedron
2002,
58:
7001
16f
Trost BM.
Top. Curr. Chem.
1986,
133:
3
16g
Nemoto H.
Miyata J.
Hakamata H.
Nagamochi M.
Fukumoto K.
Tetrahedron
1995,
51:
5511
16h
Nemoto H.
Fukumoto K.
Synlett
1997,
863
16i
Bernard AM.
Floris C.
Frongia A.
Piras PP.
Synlett
1998,
668
16j
Trost BM.
Acc. Chem. Res.
1974,
7:
85
16k Review: Salaün JR. In The Chemistry of the Cyclopropyl Group
Rappoport Z.
Wiley;
New York:
1987.
p.809
16l
de Meijere A.
Erden I.
Weber W.
Kaufmann D.
J. Org. Chem.
1988,
53:
152
17 Substituted MCPs 1 are readily available by the reaction of aldehydes/ketones with 3-bromopropylphosphonium bromide. It should be noted that the aryl-substituted MCPs are stable at -15 °C. For the synthesis of MCPs, see: Utimoto K.
Tamura M.
Sisido K.
Tetrahedron
1973,
29:
1169